Installation¶
Requirements¶
- Python >= 3.10.0 (Recommend to use Anaconda or Miniconda)
- PyTorch >= 2.5.1+cu12.4
Quick Install¶
git clone https://github.com/NVlabs/Sana.git
cd Sana
bash ./environment_setup.sh sana
# or you can install each components step by step following environment_setup.sh
Hardware Requirements¶
| Model | VRAM Required |
|---|---|
| Sana-0.6B | 9GB |
| Sana-1.6B | 12GB |
| 4-bit Quantized | < 8GB |
Note
All the tests are done on A100 GPUs. Different GPU versions may vary.
Diffusers Installation¶
To use Sana with diffusers, make sure to upgrade to the latest version:
Quick Start with Diffusers¶
import torch
from diffusers import SanaPipeline
pipe = SanaPipeline.from_pretrained(
"Efficient-Large-Model/SANA1.5_1.6B_1024px_diffusers",
torch_dtype=torch.bfloat16,
)
pipe.to("cuda")
pipe.vae.to(torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = pipe(
prompt=prompt,
height=1024,
width=1024,
guidance_scale=4.5,
num_inference_steps=20,
generator=torch.Generator(device="cuda").manual_seed(42),
)[0]
image[0].save("sana.png")
Optional: Docker¶
# Build Docker image
docker build -t sana .
# Run inference with Docker
docker run --gpus all -it sana python scripts/inference.py
Next Steps¶
- Model Zoo - Choose your model
- SANA-Sprint - Fast inference mode with 1-4 steps generations
- SANA-Video - Video Gen with Linear Attention and Linear Block KV-Cache