Skip to main content
Log in

Emerging spintronics applications of magnetic van der Waals heterostructures

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Designing magnetic van der Waals (vdW) heterostructures by stacking two-dimensional (2D) magnetic materials with other 2D materials enables the investigation of 2D spintronics owing to the strong magnetic proximity effect. Spin manipulation at the vdW interface can be achieved by stacking architectures and external stimuli, such as magnetic fields, electric fields, stress, and light. Moreover, elucidating the effects of magnetic interfacial interactions and related interlayer coupling is crucial for exploring practical spintronic applications of magnetic vdW heterostructures. In this review, vdW interlayer interactions are categorized into spin–orbit coupling, spin transfer torque, and spin–charge transfer, and the magnetic vdW heterostructures are classified into three categories: magnetic material/magnetic material, magnetic material/non-magnetic material, and magnetic material/ferroelectric material heterostructures. Subsequently, related interfacial interactions in magnetic vdW heterostructures are introduced, and the spin manipulation technique is discussed. Moreover, various applications of magnetic vdW heterostructures by modulating the electron spin are explored. Finally, emerging opportunities are highlighted, and a perspective on the future development of magnetic vdW heterostructures through delicate spin manipulation is provided.

Graphical abstract

Magnetic vdW heterostructures are classified according to vdW interlayer interactions including spin-orbit coupling, spin-transfer torque, and spin-charge transfer. Various applications and perspectives of magnetic vdW heterostructures allow authors to explore novel applications through spin manipulation.

摘要

新型二维自旋电子器件的设计,可以利用二维磁性材料中层间范德华相互作用和近邻效应,通过构筑二维磁性范德华异质结来实现。进一步,二维材料的超薄特性允许研究者通过多种外部刺激手段(如磁场、电场、应力和光等)实现对范德华异质结界面处的自旋调控。阐明范德华异质结中界面相互作用及层间磁性耦合效应,对探索新型自旋电子功能器件至关重要。本综述根据多种层间耦合机制将范德华层间相互作用归类为自旋-轨道耦合、自旋转移矩和自旋-电荷转移三类,并将磁性范德华异质结分为磁性材料/磁性材料、磁性材料/非磁性材料、磁性材料/铁电材料等三种体系。随后我们系统介绍了多种利用磁性范德华异质结界面设计和层间耦合作用的自旋调控技术。进一步,探讨了利用电子自旋技术开展多类磁性范德瓦尔斯异质结在自旋电子学领域的应用研究。最后,我们展望了范德华异质结中自旋精准调控技术为未来多功能自旋电子器件的发展带来的新机遇与新方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [124]. Copyright 2024, American Chemical Society. Anomalous Hall effect (AHE). Reproduced with permission from Ref. [147]. Copyright 2024, John Wiley and Sons. Spin–orbit torque (SOT). Reproduced with permission from Ref. [154]. Copyright 2024, American Chemical Society. Exchange bias (EB). Reproduced with permission from Ref. [169]. Copyright 2025, American Chemical Society. Enhanced Curie temperature (Tc). Reproduced with permission from Ref. [178]. Copyright 2024, American Chemical Society. The spintronics applications can be classified into the tunneling magnetoresistance (TMR) effect. Reproduced with permission from Ref. [183]. Copyright 2025, John Wiley and Sons. Spin filter. Reproduced with permission from Ref. [187]. Copyright 2024, AIP Publishing. Memtransistor. Reproduced with permission from Ref. [213]. Copyright 2024, John Wiley and Sons. Magnetic storage. Reproduced with permission from Ref. [218]. Copyright 2023, Springer Nature. Thermoelectric conversion. Reproduced with permission from Ref. [221]. Copyright 2022, Elsevier. Chiral light detection. Reproduced with permission from Ref. [228]. Copyright 2025, American Chemical Society

Fig. 2

Reproduced with permission from Ref. [123]. Copyright 2024, American Chemical Society. C Schematic illustration of the VSe2/WX2 heterostructure; D valley polarizations of monolayer WSe2, 1T-VSe2/WSe2, and 2H-VSe2/WSe2 heterostructures with and without magnetic field of 0.25 T at the temperature of 300 K (left) and of monolayer WS2, 1T-VSe2/WS2, and 2H-VSe2/WS2 heterostructures at the temperature of 13 K (right). Reproduced with permission from Ref. [124]. Copyright 2024, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [147]. Copyright 2024, John Wiley and Sons. D Schematic illustration of the (BixSb1-x)2Te3/CrGeTe3 heterostructure; E Hall resistance of sample with x = 0.25; F comparison of the device with other systems. Reproduced with permission from Ref. [148]. Copyright 2019, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [153]. Copyright 2024, John Wiley and Sons. D Schematic diagram of the Bi2Se3/ Fe3GeTe2 heterostructure. J is the current pulse injected into the device, H0 is the in-plane bias field, M is the magnetization of Fe3GeTe2 and HDL is the damping-like effective magnetic field; E measurement of Hall resistance after applying current pulses every 50 μs at T = 50 K with a fixed in-plane bias field 500 Oe; F SOT efficiency at different temperatures. The red data point represents the SOT efficiency determined from the field rotation measurements, and the black data points represent the average of the field scan measurements at different injection currents. Reproduced with permission from Ref. [154]. Copyright 2024, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [168]. Copyright 2025, John Wiley and Sons. C Schematic illustration of the CrSBr/Fe3GaTe2 heterostructure; D cooling field dependence of the EB field (HEB) under positive field cooling (PFC) and negative field cooling (NFC), respectively; E temperature dependences of the HEB and the coercivity (Hc). Reproduced with permission from Ref. [169]. Copyright 2025, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [177]. Copyright 2021, American Chemical Society. D Schemes of standard Hall effect measurement and three types of Fe3GaTe2-based vdW heterostructures (MoS2/Fe3GaTe2, WSe2/Fe3GaTe2 and Bi1.5Sb0.5Te1.7Se1.3/Fe3GaTe2); E summary of Tc for samples; F summary of perpendicular magnetic anisotropy constant (Ku) for samples at 300 K. Reproduced with permission from Ref. [178]. Copyright 2024, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [183]. Copyright 2025, John Wiley and Sons

Fig. 8

Reproduced with permission from Ref. [186]. Copyright 2023, Royal Society of Chemistry. I The schematic diagram and external experimental configuration of the Fe3GeTe2/MoSe2/Fe3GeTe2 heterostructure; j TMR curves of the heterostructure with bias voltage at different temperatures. Reproduced with permission from Ref. [187]. Copyright 2024, AIP Publishing. K TMR ratio as a function of temperature of the Fe3GaTe2/WSe2/Fe3GaTe2 heterostructure; L TMR versus current bias at 2 and 300 K of the Fe3GaTe2/WSe2/Fe3GaTe2 heterostructure. Reproduced with permission from Ref. [188]. Copyright 2023, John Wiley and Sons

Fig. 9

Reproduced with permission from Ref. [212]. Copyright 2022, Royal Society of Chemistry. E Schematic structure of the graphene/CrI3/graphene heterostructure; F clear Landau level (LL) stripes; G schematic illustration of LLs in the magnetized graphene on CrI3. Reproduced with permission from Ref. [213]. Copyright 2024, John Wiley and Sons. H Schematic illustration of the device consists of monolayer graphene covering a few layers of CrI3 stacking on graphite flake; I bias-dependent scanning tunneling microscope (STM) image taken at Vs = 2.5 V; J the processed STM image of Vs = 0.6 V to visualize the atomic lattice of both layers; K STM image showing the Moiré pattern of the device. Reproduced with permission from Ref. [214]. Copyright 2021, Springer Nature

Fig. 10

Reproduced with permission from Ref. [217]. Copyright 2025, John Wiley and Sons. D Illustration of the graphite/CrOCl/graphite heterostructure; e 2D mapping of the tunneling current after electric and magnetic sweep. Reproduced with permission from Ref. [218]. Copyright 2023, Springer Nature

Fig. 11

Reproduced with permission from Ref. [221]. Copyright 2024, Springer Nature

Fig. 12

Reproduced with permission from Ref. [226]. Copyright 2024, American Chemical Society. C Ids–Vds curves of the MoS2/CrOCl heterostructure under dark and 532 nm illumination. Inset is the schematic diagram of the heterostructure; D polar plots of the photocurrents of the original MoS2 device and MoS2/CrOCl heterostructure as functions of the polarization angle. Reproduced with permission from Ref. [227]. Copyright 2024, John Wiley and Sons. E Schematic diagram of the graphene/CrSBr heterostructure, where the external magnetic field is applied out of plane; F saturation value and \({R}_{\text{AHE}}^{\text{sat}}\) MR (extracted at 2 T) as a function of power density. Reproduced with permission from Ref. [228]. Copyright 2025, American Chemical Society

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666. https://doi.org/10.1126/science.1102896.

    Article  PubMed  CAS  Google Scholar 

  2. He JY, Xie Q, Xu G. Confinement effect enhanced Stoner ferromagnetic instability in monolayer 1T-VSe2. NJP. 2021;23(2):023027. https://doi.org/10.1088/1367-2630/abdfef.

    Article  CAS  Google Scholar 

  3. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL, Zhong D, Schmidgall E, McGuire MA, Cobden DH, Yao W, Xiao D, Jarillo-Herrero P, Xu XD. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546(7657):270. https://doi.org/10.1038/nature22391.

    Article  PubMed  CAS  Google Scholar 

  4. Gong C, Li L, Li ZL, Ji HW, Stern A, Xia Y, Cao T, Bao W, Wang CZ, Wang Y, Qiu ZQ, Cava RJ, Louie SG, Xia J, Zhang X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546(7657):265. https://doi.org/10.1038/nature22060.

    Article  PubMed  CAS  Google Scholar 

  5. Deng YJ, Yu YJ, Song YC, Zhang JZ, Wang NZ, Sun ZY, Yi YF, Wu YZ, Wu SW, Zhu JY, Wang J, Chen XH, Zhang YB. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature. 2018;563(7729):94. https://doi.org/10.1038/s41586-018-0626-9.

    Article  PubMed  CAS  Google Scholar 

  6. Yang Y, Liang QR, Zhu CL, Zheng GZ, Zhang J, Zheng SJ, Lin YC, Zheng DZ, Zhou JD. Chemical vapor deposition synthesis of V-doped MoS2. Rare Met. 2023;42(12):3985–92. https://doi.org/10.1007/s12598-023-02431-9.

    Article  CAS  Google Scholar 

  7. Feng JD, Zhang WC, Li KP, Zheng MK, Liu Y, Zuo C, Chen M, Wang DJ, Yuan YY, Wang K, Zhang ZH, Xiong R, Lu ZH. Tailoring of band alignments and magnetic properties in two-dimensional CrBr3/MoS2 van der Waals heterobilayer. Comput Mater Sci. 2024;236:112862. https://doi.org/10.1016/j.commatsci.2024.112862.

    Article  CAS  Google Scholar 

  8. Grebenchuk S, McKeever C, Grzeszczyk M, Chen Z, Šiškins M, McCray ARC, Li Y, Petford-Long AK, Phatak CM, Ruihuan D, Zheng L, Novoselov KS, Santos EJG, Koperski M. Topological spin textures in an insulating van der Waals ferromagnet. Adv Mater. 2024;36(24):2311949. https://doi.org/10.1002/adma.202311949.

    Article  CAS  Google Scholar 

  9. He WW, Tang ZM, Gong QH, Yi M, Guo WL. Theoretical study on magnetocaloric effect and its electric-field regulation in CrI3/metal heterostructure. Sci China Phys Mech Astron. 2024;67(2):226811. https://doi.org/10.1007/s11433-023-2238-2.

    Article  CAS  Google Scholar 

  10. Si JS, Wu XC, Li SZ, Li HX, Zhang WB. Interlayer magnetic exchange mechanism of bilayer transition-metal trihalides. Adv Quantum Technol. 2024;7(5):2300418. https://doi.org/10.1002/qute.202300418.

    Article  CAS  Google Scholar 

  11. Sidike A, Zhang XJ, Shi YC, Xu JT, Zhang B, Long MQ. Modulating the electronic transport properties of zigzag phosphorene nanoribbons through the coupling with the chromium triiodide molecules. Phys Lett A. 2024;507:129477. https://doi.org/10.1016/j.physleta.2024.129477.

    Article  CAS  Google Scholar 

  12. Deng JH, Guo DP, Wen Y, Lu SZ, Zhang H, Cheng ZB, Pan ZM, Jian T, Li DY, Wang H, Bai YS, Li ZL, Ji W, He J, Zhang CD. Evidence of ferroelectricity in an antiferromagnetic vanadium trichloride monolayer. Sci Adv. 2025;11(10):eado6538. https://doi.org/10.1126/sciadv.ado6538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Grebenchuk S, McKeever C, Grzeszczyk M, Chen ZL, Šiškins M, McCray ARC, Li Y, Petford-Long AK, Phatak CM, Ruihuan D, Zheng L, Novoselov KS, Santos EJG, Koperski M. Topological spin textures in an insulating van der Waals ferromagnet. Adv Mater. 2024;36(24):2311949. https://doi.org/10.1002/adma.202311949.

    Article  CAS  Google Scholar 

  14. Liu JX, Zheng MM, Zhang XZ, Liu X, Luo SF, Lin MY, Luo W, Peng G, Lv TY, Zhang XA, Deng CY. Abnormal linear dichroism in anisotropic van der Waals crystal CrOCl revealed by phase-dependent polarized Raman scattering. Adv Opt Mater. 2024;12(16):2303190. https://doi.org/10.1002/adom.202303190.

    Article  CAS  Google Scholar 

  15. Yang L, Gong Y, Lv Y, Huang S, Huang P, Huo DX. Magnetic and thermodynamic study of the interplay between magnetism and structure in CrOCl. J Alloys Compd. 2024;982:173845. https://doi.org/10.1016/j.jallcom.2024.173845.

    Article  CAS  Google Scholar 

  16. Cao SM, Zheng RJ, Wang C, Ma N, Chen MT, Song YJ, Feng Y, Hao TT, Zhang Y, Wang YN, Gu PF, Watanabe K, Taniguchi T, Liu Y, Xie XC, Ji W, Ye Y, Han Z, Chen J-H. Magnetic-electrical synergetic control of non-volatile states in bilayer graphene-CrOCl heterostructures. Adv Mater. 2025;37(3):2411300. https://doi.org/10.1002/adma.202411300.

    Article  CAS  Google Scholar 

  17. Pei FF, Yu JJ, Zhou JY, Wang SY, Liu DX, Yuan YN, Xi L, Jin F, Kan XC, Wang C, Wang LF, Yan WS, Wu YZ, Wang SG, Chen K, Ma TP, Liu X, Yang MM, Li Q. Surface-sensitive detection of magnetic phase transition in van der Waals magnet CrSBr. Adv Funct Mater. 2024;34(12):2309335. https://doi.org/10.1002/adfm.202309335.

    Article  CAS  Google Scholar 

  18. Smolenski S, Wen M, Li QY, Downey E, Alfrey A, Liu WH, Kondusamy ALN, Bostwick A, Jozwiak C, Rotenberg E, Zhao LY, Deng H, Lv B, Zgid D, Gull E, Jo NH. Large exciton binding energy in a bulk van der Waals magnet from quasi-1D electronic localization. Nat Commun. 2025;16(1):1134. https://doi.org/10.1038/s41467-025-56457-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sun ZY, Hong CY, Chen Y, Sheng ZY, Wu S, Wang ZS, Liang BK, Liu WT, Yuan Z, Wu YZ, Mi QX, Liu ZK, Shen J, Wu SW. Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet. Nat Mater. 2025;24(2):226. https://doi.org/10.1038/s41563-024-02074-w.

    Article  PubMed  CAS  Google Scholar 

  20. Yang Y, Liu JJ, Zhao CY, Liang QR, Dong WK, Shi J, Wang P, Kong DN, Lv L, Jia L, Wang DN, Huang C, Zheng SJ, Wang ML, Liu FC, Yu P, Qiao JS, Ji W, Zhou JD. A universal strategy for synthesis of 2D ternary transition metal phosphorous chalcogenides. Adv Mater. 2024;36(3):2307237. https://doi.org/10.1002/adma.202307237.

    Article  CAS  Google Scholar 

  21. Zhang T, Xu XL, Guo JH, Dai Y, Ma YD. Layer-polarized anomalous Hall effects from inversion-symmetric single-layer lattices. Nano Lett. 2024;24(3):1009. https://doi.org/10.1021/acs.nanolett.3c04597.

    Article  PubMed  CAS  Google Scholar 

  22. Rao R, Selhorst R, Siebenaller R, Giordano AN, Conner BS, Rowe E, Susner MA. Mode-selective spin–phonon coupling in van der Waals antiferromagnets. Adv Phys Res. 2024;3(6):2300153. https://doi.org/10.1002/apxr.202300153.

    Article  Google Scholar 

  23. Basnet R, Patel T, Wang J, Upreti D, Chhetri SK, Acharya G, Nabi MRU, Sakon J, Hu J. Understanding and tuning magnetism in layered Ising-type antiferromagnet FePSe3 for potential 2D magnet. Adv Electron Mater. 2024;10(7):2300738. https://doi.org/10.1002/aelm.202300738.

    Article  CAS  Google Scholar 

  24. Qiu J, Huang WJ, Lee YJ, Kim S, Chen XB, Yang IS. Raman study of the spin–lattice excitations of the layered antiferromagnets MPSe3 (M=Fe, Mn). Results Phys. 2024;56:107256. https://doi.org/10.1016/j.rinp.2023.107256.

    Article  Google Scholar 

  25. Huang QL, Pei SH, Li BF, Cheng HY, Li GM, Huang MY. Raman evidence of phase transitions for FePS3 and FePSe3 under high pressure. J Phys Chem C. 2024;128(1):177. https://doi.org/10.1021/acs.jpcc.3c05326.

    Article  CAS  Google Scholar 

  26. Tezze D, Pereira JM, Tutar D, Ramos M, Regner J, Gargiani P, Schiller F, Casanova F, Alegria A, Martín-García B, Sahin H, Sofer Z, Ormaza M, Hueso LE, Gobbi M. Tunable magnetism in 2D organic-ion-intercalated MnPS3 via molecule-dependent vacancy generation. Adv Funct Mater. 2025;35(2):2412771. https://doi.org/10.1002/adfm.202412771.

    Article  CAS  Google Scholar 

  27. Li YH, Liang GM, Kong CT, Sun BQ, Zhang XH. Charge-transfer-mediated exciton dynamics in van der Waals antiferromagnet NiPS3. Adv Funct Mater. 2024;34(40):2402161. https://doi.org/10.1002/adfm.202402161.

    Article  CAS  Google Scholar 

  28. Sun ZL, Ye GH, Zhou CK, Huang MQ, Huang N, Xu XL, Li QY, Zheng GX, Ye ZP, Nnokwe C, Li L, Deng H, Yang L, Mandrus D, Meng ZY, Sun K, Du CR, He R, Zhao LY. Dimensionality crossover to a two-dimensional vestigial nematic state from a three-dimensional antiferromagnet in a honeycomb van der Waals magnet. Nat Phys. 2024;20(11):1764. https://doi.org/10.1038/s41567-024-02618-6.

    Article  CAS  Google Scholar 

  29. Matsumoto R, Yamamoto S, Terashima K, Yamane K, Takano Y. Electrical transport properties of van der Waals insulator CrGeTe3 under extremely high pressure up to 52 GPa. J Phys Soc Jpn. 2024;93(4):044710. https://doi.org/10.7566/JPSJ.93.044710.

    Article  Google Scholar 

  30. Zhang SY, Harii K, Yokouchi T, Okayasu S, Shiomi Y. Amorphous ferromagnetic metal in van der Waals materials. Adv Electron Mater. 2024;10(2):2300609. https://doi.org/10.1002/aelm.202300609.

    Article  CAS  Google Scholar 

  31. Mehrnejat A, Hatnean MC, Rosamond MC, Banerjee N, Balakrishnan G, Savel’ev SE, Dejene FK. Flux-pinning mediated superconducting diode effect in NbSe2/CrGeTe3 heterostructure. 2D Mater. 2024;11(2):021002. https://doi.org/10.1088/2053-1583/ad27e7.

    Article  CAS  Google Scholar 

  32. Komorowski PG, Cottam MG. Theory for magnetic impurity modes in two-dimensional van der Waals ferromagnetic films. J Phys- Condens Matter. 2024;36(21):215801. https://doi.org/10.1088/1361-648X/ad2671.

    Article  CAS  Google Scholar 

  33. Kim D-I, Kawaji M, Sato H, Kawamura R, Tamaki R, Kusaba S, Wang YL, Shuang Y, Sutou YJ, Katayama I, Takeda J. Thermally-induced nanoscale phase change in chalcogenide glass Cr2Ge2Te6 revealed by scanning tunneling microscopy. Jpn J Appl Phys. 2024;63(1):015504. https://doi.org/10.35848/1347-4065/ad13a7.

    Article  CAS  Google Scholar 

  34. Yang H, Zhang HS, Guo LH, Yang WJ, Wu Y, Wang JJ, Li XL, Du HF, Peng B, Liu QX, Wang F, Xue DJ, Xu XH. Template selection strategy for synthesis of one-dimensional CrSbSe3 ferromagnetic semiconductor nanoribbons. Nano Lett. 2024;24(34):10519. https://doi.org/10.1021/acs.nanolett.4c02533.

    Article  PubMed  CAS  Google Scholar 

  35. Jiang QT, Yang HL, Xue WH, Yang RL, Shen JL, Zhang XY, Li RW, Xu XH. Controlled growth of submillimeter-scale Cr5Te8 nanosheets and the domain wall nucleation governed magnetization reversal process. Nano Lett. 2024;24(4):1246. https://doi.org/10.1021/acs.nanolett.3c04200.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang XQ, Li Y, Lu QS, Xiang XQ, Sun XZ, Tang CL, Mahdi M, Conner C, Cook J, Xiong YZ, Inman J, Jin WC, Liu C, Cai PY, Santos EJG, Phatak C, Zhang W, Gao N, Niu W, Bian G, Li P, Yu DP, Long SB. Epitaxial growth of large-scale 2D CrTe2 films on amorphous silicon wafers with low thermal budget. Adv Mater. 2024;36(24):2311591. https://doi.org/10.1002/adma.202311591.

    Article  CAS  Google Scholar 

  37. Meng K, Li ZY, Gao ZS, Bi XY, Chen P, Qin F, Qiu CY, Xu LY, Huang JW, Wu JX, Luo F, Yuan HT. Gate-tunable Berry curvature in van der Waals itinerant ferromagnetic Cr7Te8. InfoMat. 2024;6(3):e12524. https://doi.org/10.1002/inf2.12524.

    Article  CAS  Google Scholar 

  38. Jang JM, Srivastava PK, Joe M, Jung S-G, Park T, Kim Y, Lee C. Half-metallic antiferromagnetic 2D nonlayered Cr2Se3 nanosheets. ACS Nano. 2025;19(1):999. https://doi.org/10.1021/acsnano.4c12646.

    Article  PubMed  CAS  Google Scholar 

  39. Fujita R, Gurung G, Mawass MA, Smekhova A, Kronast F, Toh AK-J, Soumyanarayanan A, Ho P, Singh A, Heppell E, Backes D, Maccherozzi F, Watanabe K, Taniguchi T, Mayoh DA, Balakrishnan G, van der Laan G, Hesjedal T. Strain-modulated ferromagnetism at an intrinsic van der Waals heterojunction. Adv Funct Mater. 2024;34(36):2400552. https://doi.org/10.1002/adfm.202400552.

    Article  CAS  Google Scholar 

  40. Pal R, Pal B, Mondal S, Sharma RO, Das T, Mandal P, Pal AN. Spin-reorientation driven emergent phases and unconventional magnetotransport in quasi-2D vdW ferromagnet Fe4GeTe2. NPJ 2D Mater Appl. 2024;8(1):30. https://doi.org/10.1038/s41699-024-00463-y.

    Article  CAS  Google Scholar 

  41. Lv XW, Huang YL, Pei K, Yang CD, Zhang TJ, Li W, Cao GX, Zhang JC, Lai YX, Che RC. Manipulating the magnetic bubbles and topological Hall effect in 2D magnet Fe5GeTe2. Adv Funct Mater. 2024;34(11):2308560. https://doi.org/10.1002/adfm.202308560.

    Article  CAS  Google Scholar 

  42. Ahmad GS, Hong J. Hole induced half-metallic 2H VSe2 thin film with high Curie temperature and optical transparency. J Korean Phys Soc. 2024;84(6):462–9. https://doi.org/10.1007/s40042-024-01010-0.

    Article  CAS  Google Scholar 

  43. Khan I, Hong JS. Amplification of ferromagnetic and transverse transport properties during monolayer-to-bilayer transition in MnSe2: a first-principle study. J Phys Chem Solids. 2024;187:111805. https://doi.org/10.1016/j.jpcs.2023.111805.

    Article  CAS  Google Scholar 

  44. Liu JW, Wang C, Wang YW, Xu JB, Ji W, Xu MS, Yang DR. Si-CMOS compatible synthesis of wafer-scale 1T-CrTe2 with step-like magnetic transition. Adv Mater. 2025;37(12):2414845. https://doi.org/10.1002/adma.202414845.

    Article  CAS  Google Scholar 

  45. Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang ZW, Sun GZ, Zhao B, Ma HF, Wu RX, Wei ZM, Liu Y, Liao L, Ye Y, Huang Y, Xu XD, Duan XD, Ji W, Duan XF. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat Mater. 2021;20(6):818. https://doi.org/10.1038/s41563-021-00927-2.

    Article  PubMed  CAS  Google Scholar 

  46. Ortiz Jimenez V, Pham YTH, Liu MZ, Zhang F, Yu ZH, Kalappattil V, Muchharla B, Eggers T, Duong DL, Terrones M, Phan M-H. Light-controlled room temperature ferromagnetism in vanadium-doped tungsten disulfide semiconducting monolayers. Adv Electron Mater. 2021;7(8):2100030. https://doi.org/10.1002/aelm.202100030.

    Article  CAS  Google Scholar 

  47. Pham YTH, Liu MZ, Jimenez VO, Yu ZH, Kalappattil V, Zhang F, Wang K, Williams T, Terrones M, Phan M-H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv Mater. 2020;32(45):2003607. https://doi.org/10.1002/adma.202003607.

    Article  CAS  Google Scholar 

  48. Fu SC, Kang K, Shayan K, Yoshimura A, Dadras S, Wang XT, Zhang LH, Chen SW, Liu N, Jindal A, Li XZ, Pasupathy AN, Vamivakas AN, Meunier V, Strauf S, Yang E-H. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat Commun. 2020;11(1):2034. https://doi.org/10.1038/s41467-020-15877-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang YQ, Fu BH, Wang YC, Lian ZC, Yang S, Li YX, Xu LC, Gao ZT, Yang XT, Wang WB, Jiang WJ, Zhang JS, Wang YY, Liu C. Towards the quantized anomalous Hall effect in AlOx-capped MnBi2Te4. Nat Commun. 2025;16(1):1727. https://doi.org/10.1038/s41467-025-57039-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Guo H, Bai CY, Zhu K, Lv SH, Zhai ZY, Qu JY, Xian GY, Han YC, Hu GJ, Qi Q, Liu GT, Jiao F, Bao LH, Bao XT, Liu XF, Chen H, Lin X, Zhou W, Zhou JD, Yang HT, Gao H-J. Controllable synthesis of high-quality magnetic topological insulator MnBi2Te4 and MnBi4Te7 multilayers by chemical vapor deposition. Nano Lett. 2024;24(49):15788. https://doi.org/10.1021/acs.nanolett.4c04700.

    Article  PubMed  CAS  Google Scholar 

  51. Gao AY, Chen SW, Ghosh B, Qiu JX, Liu YF, Onishi Y, Hu CW, Qian T, Bérubé D, Dinh T, Li HC, Tzschaschel C, Park S, Huang TY, Lien S-W, Sun Z, Ho SC, Singh B, Watanabe K, Taniguchi T, Bell DC, Bansil A, Lin H, Chang TR, Yacoby A, Ni N, Fu L, Ma Q, Xu S-Y. An antiferromagnetic diode effect in even-layered MnBi2Te4. Nat Electron. 2024;7(9):751. https://doi.org/10.1038/s41928-024-01219-8.

    Article  CAS  Google Scholar 

  52. Zhang HS, Peng JH, Zhang YL, Yang WJ, Wang YS, Man XX, Xu XH. Electron doping: a generic approach for realizing interlayer ferromagnetic coupling in the antiferromagnetic MnBi2Te4 family of materials. Phys Rev B. 2025;111(1):014404. https://doi.org/10.1103/PhysRevB.111.014404.

    Article  CAS  Google Scholar 

  53. Li JH, Wu QS, Weng HM. Stacking-dependent electronic and topological properties in van der Waals antiferromagnet MnBi2Te4 films. npj Comput Mater. 2025;11(1):53. https://doi.org/10.1038/s41524-025-01545-1.

    Article  CAS  Google Scholar 

  54. Liu Y, Wang W, Lu HY, Xie QY, Chen LM, Yin HD, Cheng GF, Wu XS. The environmental stability characterization of exfoliated few-layer CrXTe3 (X= Si, Ge) nanosheets. Appl Surf Sci. 2020;511:145452. https://doi.org/10.1016/j.apsusc.2020.145452.

    Article  CAS  Google Scholar 

  55. Zhang ZW, Shang JZ, Jiang CY, Rasmita A, Gao WB, Yu T. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 2019;19(5):3138. https://doi.org/10.1021/acs.nanolett.9b00553.

    Article  PubMed  CAS  Google Scholar 

  56. Liu CS, Yan X, Song XF, Ding SJ, Zhang DW, Zhou P. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nanotechnol. 2018;13(5):404. https://doi.org/10.1038/s41565-018-0102-6.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang CH, Zhang JW, Liu C, Zhang SF, Yuan Y, Li P, Wen Y, Jiang Z, Zhou BJ, Lei YJ, Zheng DX, Song CK, Hou ZP, Mi WB, Schwingenschlögl U, Manchon A, Qiu ZQ, Alshareef HN, Peng Y, Zhang XX. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv Mater. 2021;33(35):2101131. https://doi.org/10.1002/adma.202101131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Guo TF, Ma ZW, Luo X, Hou YB, Meng WJ, Wang JH, Zhang J, Feng QY, Lin GT, Sun YP, Sheng ZG, Lu QY. Multiple domain structure and symmetry types in narrow temperature and magnetic field ranges in layered Cr2Ge2Te6 crystal measured by magnetic force microscope. Mater Charact. 2021;173:110913. https://doi.org/10.1016/j.matchar.2021.110913.

    Article  CAS  Google Scholar 

  59. Yuan JT, Balk A, Guo H, Fang QY, Patel S, Zhao XH, Terlier T, Natelson D, Crooker S, Lou J. Room-temperature magnetic order in air-stable ultrathin iron oxide. Nano Lett. 2019;19(6):3777. https://doi.org/10.1021/acs.nanolett.9b00905.

    Article  PubMed  CAS  Google Scholar 

  60. Fei ZY, Huang B, Malinowski P, Wang WB, Song TC, Sanchez J, Yao W, Xiao D, Zhu XY, May AF, Wu Wd, Cobden DH, Chu J-H, Xu XD. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater. 2018;17(9):778. https://doi.org/10.1038/s41563-018-0149-7.

    Article  PubMed  CAS  Google Scholar 

  61. Zhou SS, Wang RY, Han JB, Wang DL, Li HQ, Gan L, Zhai TY. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and Raman scattering investigation. Adv Funct Mater. 2019;29(3):1805880. https://doi.org/10.1002/adfm.201805880.

    Article  CAS  Google Scholar 

  62. Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science. 2019;363(6428):eaav4450. https://doi.org/10.1126/science.aav4450.

    Article  PubMed  CAS  Google Scholar 

  63. Tian YP, Wang CB, Duan JX, Zhang BY, Zhang LL, Gong WJ. Lanthanide atoms doped arsenene monolayer: enhanced magnetic anisotropies, huge magnetic moments and significant strain-modulated effects. J Rare Earths. 2024;42(11):2137–49. https://doi.org/10.1016/j.jre.2023.10.024.

    Article  CAS  Google Scholar 

  64. Feng Y, Fang C, Ai YL, Wang HB, Gao L, Chen H, Bian XH. Crystal orientation in Ni-Mn-In melt-spun ribbons. Rare Met. 2023;42(4):1398–402. https://doi.org/10.1007/s12598-018-1026-x.

    Article  CAS  Google Scholar 

  65. Huang JY, Zuo SL, Zhang Q, Dai HY, Yang L, Liu JH, Jiang CB. 2:17-type SmCo permanent magnets with controllable remanence temperature coefficients via substitution of heavy rare earth elements. Rare Met. 2024;43(8):3990–6. https://doi.org/10.1007/s12598-024-02778-7.

    Article  CAS  Google Scholar 

  66. Fang C, Yan Z, Zhang XJ, Wang F, Xu XH. Enhanced structural stability and magnetism of SmCo3 permanent magnet doped with 3d transition metals: an ab initio study. Rare Met. 2024;44(2):1256–66. https://doi.org/10.1007/s12598-024-02983-4.

    Article  CAS  Google Scholar 

  67. Kim J, Okada S, Takagi K. Low-temperature synthesis of Sm-Fe binary compounds by reduction-diffusion process using an eutectic salt solvent. Rare Met. 2023;42(5):1724–31. https://doi.org/10.1007/s12598-022-02219-3.

    Article  CAS  Google Scholar 

  68. Pan YD, Yu LR, Wang L, Chen T, Wei XY, Zhu RG, Li JW, Feng C, Yu GH. Construction of high-performance magnetic sensor based on anisotropic magnetoresistance Ta/MgO/NiFe/MgO/Ta film. Rare Met. 2021;40(8):2026. https://doi.org/10.1007/s12598-021-01719-y.

    Article  CAS  Google Scholar 

  69. Lu LY, Wang Q, Duan HL, Zhu KJ, Hu T, Ma YP, Shen SC, Niu YR, Liu JT, Wang JL, Ekahana SA, Dreiser J, Soh Y, Yan WS, Wang GP, Xiong YM, Hao N, Lu YL, Tian ML. Tunable magnetism in atomically thin itinerant antiferromagnet with room-temperature ferromagnetic order. Nano Lett. 2024;24(20):5984. https://doi.org/10.1021/acs.nanolett.4c00472.

    Article  PubMed  CAS  Google Scholar 

  70. Kong DL, Kovács A, Charilaou M, Altthaler M, Prodan LL, Tsurkan V, Meier D, Han XD, Kézsmárki I, Dunin-Borkowski RE. Strain engineering of magnetic anisotropy in the Kagome magnet Fe3Sn2. ACS Nano. 2025;19(8):8142. https://doi.org/10.1021/acsnano.4c16603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ying BY, Xin BJ, Li MM, Zhou SY, Liu Q, Zhu ZH, Qin SQ, Wang W-H, Zhu MJ. Efficient charge transfer in graphene/CrOCl heterostructures by van der Waals interfacial coupling. ACS Appl Mater Interfaces. 2024;16(33):43806. https://doi.org/10.1021/acsami.4c07233.

    Article  PubMed  CAS  Google Scholar 

  72. Jiang SW, Li LZ, Wang ZF, Mak KF, Shan J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol. 2018;13(7):549. https://doi.org/10.1038/s41565-018-0135-x.

    Article  PubMed  CAS  Google Scholar 

  73. Chen JY, Xie X, Oyang XY, Li SF, He J, Liu ZW, Wang JT, Liu YP. Giant optical anisotropy induced by magnetic order in FePS3/WSe2 heterostructures. Small. 2024;20(48):2404346. https://doi.org/10.1002/smll.202404346.

    Article  CAS  Google Scholar 

  74. Huang ZH, Peng LX, Liu XL, Sun K, Liu JF, Yang FM, Wu Q. Advancing sensing frontiers: elevating performance metrics and extending applications through two-dimensional materials. Rare Met. 2023;42(12):3985–92. https://doi.org/10.1007/s12598-023-02431-9.

    Article  CAS  Google Scholar 

  75. Zhu ZK, Li ZY, Qin Z, Wang YM, Wang D, Zeng XH, Liu FY, Dong HL, Hu QY, Kong LP, Liu HZ, Yang WG, Guo YF, Yan S, Fang X, He W, Liu G. Pressure-driven metallization with significant changes of structural and photoelectric properties in two-dimensional EuSbTe3. Rare Met. 2024;43(11):5943–52. https://doi.org/10.1007/s12598-024-02812-8.

    Article  CAS  Google Scholar 

  76. Liu QQ, Yang G, Zhang JY, Feng GN, Feng C, Zhan Q, Li MH, Yu GH. Tunable perpendicular anisotropic magnetoresistance in CoO/Co/Pt heterostructures. Rare Met. 2023;42(2):579–84. https://doi.org/10.1007/s12598-017-0932-7.

    Article  CAS  Google Scholar 

  77. Chen XX, Luo Y, Hu Z, Yan WL, Quan NT, Lu S, Yu DB, Xie JJ. Structure, nitridation efficiency and magnetic properties of SmFe powders and its nitrides. Rare Met. 2023;42(6):1983–8. https://doi.org/10.1007/s12598-017-0943-4.

    Article  CAS  Google Scholar 

  78. Zollner K, Kurpas M, Gmitra M, Fabian J. First-principles determination of spin–orbit coupling parameters in two-dimensional materials. Nat Rev Phys. 2025;7(5):255–69. https://doi.org/10.1038/s42254-025-00818-4.

    Article  Google Scholar 

  79. Wang K, Zhang H, Huang YD, Xu ZB, Li FS, Wang T. High-frequency magnetic properties of biphase Ce2Fe17N3/α-Fe microflakes with easy-plane anisotropy. J Rare Earths. 2024;42(1):110–5. https://doi.org/10.1016/j.jre.2023.02.003.

    Article  CAS  Google Scholar 

  80. Zheng J, Zhang J, Cheng S, Shi WX, Wang MQ, Li Z, Chen YZ, Hu FX, Shen BG, Chen YS, Zhu T, Sun JR. Room-temperature ferromagnetism with strong spin–orbit coupling achieved in CaRuO3 interfacial phase via magnetic proximity effect. ACS Nano. 2024;18(47):32625. https://doi.org/10.1021/acsnano.4c10014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kumar A, Chaurasiya AK, González VH, Behera N, Alemán A, Khymyn R, Awad AA, Åkerman J. Spin-wave-mediated mutual synchronization and phase tuning in spin Hall nano-oscillators. Nat Phys. 2025;21(2):245. https://doi.org/10.1038/s41567-024-02728-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Zhang GD, Lu DD, Ding YF, Guan LC, Han SY, Guo H, Gao H. Imaging of the charge-transfer reaction of spin–orbit state-selected Ar+(2P3/2) with N2 reveals vibrational-state-specific mechanisms. Nat Chem. 2023;15(9):1255. https://doi.org/10.1038/s41557-023-01278-y.

    Article  PubMed  CAS  Google Scholar 

  83. Sun W, Wang WX, Zang JD, Li H, Zhang GB, Wang JL, Cheng ZX. Manipulation of magnetic skyrmion in a 2D van der Waals heterostructure via both electric and magnetic fields. Adv Funct Mater. 2021;31(47):2104452. https://doi.org/10.1002/adfm.202104452.

    Article  CAS  Google Scholar 

  84. Wang W, Sun W, Li H, Li X, Yu Z, Bai Y, Ren F, Zhao H, Wang J, Cheng Z. Tunning magnetism and anisotropy by ferroelectric polarization in 2D van der Waals multiferroic heterostructures. Mater Today Phys. 2022;27:100803. https://doi.org/10.1016/j.mtphys.2022.100803.

    Article  CAS  Google Scholar 

  85. Zhang HS, Yang WJ, Ning YH, Xu XH. Abundant valley-polarized states in two-dimensional ferromagnetic van der Waals heterostructures. Phys Rev B. 2020;101(20):205404. https://doi.org/10.1103/PhysRevB.101.205404.

    Article  CAS  Google Scholar 

  86. Wu YL, Zhang DJ, Zhang Y-N, Deng LJ, Peng B. Nonreciprocal and nonvolatile electric-field switching of magnetism in van der Waals heterostructure multiferroics. Nano Lett. 2024;24(20):5929. https://doi.org/10.1021/acs.nanolett.3c03970.

    Article  PubMed  CAS  Google Scholar 

  87. Lu Y, Fei RX, Lu XB, Zhu LH, Wang L, Yang L. Artificial multiferroics and enhanced magnetoelectric effect in van der Waals heterostructures. ACS Appl Mater Interfaces. 2020;12(5):6243. https://doi.org/10.1021/acsami.9b19320.

    Article  PubMed  CAS  Google Scholar 

  88. Jiang SW, Li LZ, Wang ZF, Shan J, Mak KF. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat Electron. 2019;2(4):159. https://doi.org/10.1038/s41928-019-0232-3.

    Article  Google Scholar 

  89. Ge M, Wang H, Wu JZ, Si C, Zhang JF, Zhang SB. Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures. npj Comput Mater. 2022;8(1):32. https://doi.org/10.1038/s41524-022-00715-9.

    Article  CAS  Google Scholar 

  90. Feng YL, Wu XM, Hu L, Gao GY. FeCl2/MoS2/FeCl2 van der Waals junction for spintronic applications. J Mater Chem C. 2020;8(41):14353. https://doi.org/10.1039/D0TC04156D.

    Article  CAS  Google Scholar 

  91. Sun W, Wang WX, Chen D, Cheng ZX, Wang YX. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale. 2019;11(20):9931. https://doi.org/10.1039/C9NR01510H.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang TL, Zhang YJ, Huang MY, Li B, Sun YH, Qu Z, Duan XD, Jiang CB, Yang SX. Tuning the exchange bias effect in 2D van der Waals ferro-/antiferromagnetic Fe3GeTe2/CrOCl heterostructures. Adv Sci. 2022;9(11):2105483. https://doi.org/10.1002/advs.202105483.

    Article  CAS  Google Scholar 

  93. Huang XY, Song ZG, Gao YC, Gu PF, Watanabe K, Taniguchi T, Yang SQ, Chen ZX, Ye Y. Intrinsic localized excitons in MoSe2/CrSBr teterostructure. Adv Mater. 2025;37(6):2413438. https://doi.org/10.1002/adma.202413438.

    Article  CAS  Google Scholar 

  94. Rizzo DJ, Seewald E, Zhao FZ, Cox J, Xie KC, Vitalone RA, Ruta FL, Chica DG, Shao YM, Shabani S, Telford EJ, Strasbourg MC, Darlington TP, Xu SH, Qiu SY, Devarakonda A, Taniguchi T, Watanabe K, Zhu XY, Schuck PJ, Dean CR, Roy X, Millis AJ, Cao T, Rubio A, Pasupathy AN, Basov DN. Engineering anisotropic electrodynamics at the graphene/CrSBr interface. Nat Commun. 2025;16(1):1853. https://doi.org/10.1038/s41467-025-56804-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Jo J, Peisen Y, Yang HZ, Mañas-Valero S, Baldoví JJ, Lu Y, Coronado E, Casanova F, Bergeret FS, Gobbi M, Hueso LE. Local control of superconductivity in a NbSe2/CrSBr van der Waals heterostructure. Nat Commun. 2023;14(1):7253. https://doi.org/10.1038/s41467-023-43111-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhang LM, Huang XY, Dai HW, Wang MS, Cheng H, Tong L, Li Z, Han XT, Wang X, Ye L, Han JB. Proximity-coupling-induced significant enhancement of coercive field and Curie temperature in 2D van der Waals heterostructures. Adv Mater. 2020;32(38):2002032. https://doi.org/10.1002/adma.202002032.

    Article  CAS  Google Scholar 

  97. Hu H, Tong WY, Shen YH, Duan CG. Electrical control of the valley degree of freedom in 2D ferroelectric/antiferromagnetic heterostructures. J Mater Chem C. 2020;8(24):8098. https://doi.org/10.1039/D0TC01680B.

    Article  CAS  Google Scholar 

  98. Dai HW, Cai MH, Hao QH, Liu QB, Xing YT, Chen HJ, Chen XD, Wang X, Fu H-H, Han JB. Nonlocal manipulation of magnetism in an itinerant two-dimensional ferromagnet. ACS Nano. 2022;16(8):12437. https://doi.org/10.1021/acsnano.2c03626.

    Article  PubMed  CAS  Google Scholar 

  99. Marfoua B, Hong JS. Electric filed dependent valley polarization in 2D WSe2/CrGeTe3 heterostructure. Nanotechnology. 2020;31(42):425702. https://doi.org/10.1088/1361-6528/aba0f4.

    Article  PubMed  CAS  Google Scholar 

  100. Wu YY, Francisco B, Chen ZJ, Wang W, Zhang Y, Wan CH, Han XF, Chi H, Hou YS, Lodesani A, Yin G, Liu K, Cui YT, Wang KL, Moodera JS. A van der Waals interface hosting two groups of magnetic skyrmions. Adv Mater. 2022;34(16):2110583. https://doi.org/10.1002/adma.202110583.

    Article  CAS  Google Scholar 

  101. Zhang TY, Zhao SW, Wang A, Xiong ZR, Liu YJ, Xi M, Li SL, Lei HC, Han ZV, Wang FQ. Electrically and magnetically tunable valley polarization in monolayer MoSe2 proximitized by a 2D ferromagnetic semiconductor. Adv Funct Mater. 2022;32(34):2204779. https://doi.org/10.1002/adfm.202204779.

    Article  CAS  Google Scholar 

  102. Li CK, Yao XP, Chen G. Writing and deleting skyrmions with electric fields in a multiferroic heterostructure. Phys Rev Res. 2021;3(1):L012026. https://doi.org/10.1103/PhysRevResearch.3.L012026.

    Article  CAS  Google Scholar 

  103. Khan I, Marfoua B, Hong JS. Electric field induced giant valley polarization in two dimensional ferromagnetic WSe2/CrSnSe3 heterostructure. NPJ 2D Mater Appl. 2021;5(1):10. https://doi.org/10.1038/s41699-020-00195-9.

    Article  CAS  Google Scholar 

  104. Li JX, Li WQ, Hung SH, Chen PL, Yang YC, Chang TY, Chiu PW, Jeng HT, Liu CH. Electric control of valley polarization in monolayer WSe2 using a van der Waals magnet. Nat Nanotechnol. 2022;17(7):721. https://doi.org/10.1038/s41565-022-01115-2.

    Article  PubMed  CAS  Google Scholar 

  105. Wu YY, Zhang SF, Zhang JW, Wang W, Zhu YL, Hu J, Yin G, Wong K, Fang C, Wan CH, Han XF, Shao QM, Taniguchi T, Watanabe K, Zang JD, Mao ZQ, Zhang XX, Wang KL. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat Commun. 2020;11(1):3860. https://doi.org/10.1038/s41467-020-17566-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Huang K, Shao D-F, Tsymbal EY. Ferroelectric control of magnetic skyrmions in two-dimensional van der Waals heterostructures. Nano Lett. 2022;22(8):3349. https://doi.org/10.1021/acs.nanolett.2c00564.

    Article  PubMed  CAS  Google Scholar 

  107. Marfoua B, Hong JS. Highly efficient spin-orbit torque generation in bilayer WTe2/Fe3GaTe2 heterostructure. Mater Today Phys. 2024;42(000):101378. https://doi.org/10.1016/j.mtphys.2024.101378.

    Article  CAS  Google Scholar 

  108. Albarakati S, Xie WQ, Tan C, Zheng GL, Algarni M, Li JB, Partridge J, Spencer MJS, Farrar L, Xiong YM, Tian ML, Wang XL, Zhao YJ, Wang L. Electric control of exchange bias effect in FePS3–Fe5GeTe2 van der Waals heterostructures. Nano Lett. 2022;22(15):6166. https://doi.org/10.1021/acs.nanolett.2c01370.

    Article  PubMed  CAS  Google Scholar 

  109. Du J, Xia CX, Xiong WQ, Wang TX, Jia Y, Li JB. Two-dimensional transition-metal dichalcogenides-based ferromagnetic van der Waals heterostructures. Nanoscale. 2017;9(44):17585. https://doi.org/10.1039/C7NR06473J.

    Article  PubMed  CAS  Google Scholar 

  110. Long XJ, Deng X, Hu FL, Xie J, Lv B, Liao YF, Wang WZ. Tunable valley characteristics of WSe2 and WSe2/VSe2 heterostructure. Appl Surf Sci. 2023;624:157111. https://doi.org/10.1016/j.apsusc.2023.157111.

    Article  CAS  Google Scholar 

  111. Marfoua B, Hong JS. Electric field-induced switching of anomalous Nernst conductivity in the 2D MoTe2/VSe2 heterostructure. Phys Chem Chem Phys. 2022;24(37):22523. https://doi.org/10.1039/D2CP03011J.

    Article  PubMed  CAS  Google Scholar 

  112. Zhou JQ, Qiao JF, Duan C-G, Bournel A, Wang KL, Zhao WS. Large tunneling magnetoresistance in VSe2/MoS2 magnetic tunnel junction. ACS Appl Mater Interfaces. 2019;11(19):17647. https://doi.org/10.1021/acsami.9b02493.

    Article  PubMed  CAS  Google Scholar 

  113. Lei CG, Xu XL, Zhang T, Huang BB, Dai Y, Ma YD. Nonvolatile controlling valleytronics by ferroelectricity in 2H-VSe2/Sc2CO2 van der Waals heterostructure. J Phys Chem C. 2021;125(4):2802. https://doi.org/10.1021/acs.jpcc.0c11362.

    Article  CAS  Google Scholar 

  114. He JJ, Li S, Zhou LJ, Frauenheim T. Ultrafast light-induced ferromagnetic state in transition metal dichalcogenides monolayers. J Phys Chem Lett. 2022;13(12):2765. https://doi.org/10.1021/acs.jpclett.2c00443.

    Article  PubMed  CAS  Google Scholar 

  115. Qi SF, Gao RL, Chang MZ, Han YL, Qiao ZH. Pursuing the high-temperature quantum anomalous Hall effect in MnBi2Te4/Sb2Te3 heterostructures. Phys Rev B. 2020;101(1):014423. https://doi.org/10.1103/PhysRevB.101.014423.

    Article  CAS  Google Scholar 

  116. Zhu WX, Song C, Liao LY, Zhou ZY, Bai H, Zhou YJ, Pan F. Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures. Phys Rev B. 2020;102(8):085111. https://doi.org/10.1103/PhysRevB.102.085111.

    Article  CAS  Google Scholar 

  117. Fu HX, Liu CX, Yan BH. Exchange bias and quantum anomalous Hall effect in the MnBi2Te4/CrI3 heterostructure. Sci Adv. 2020;6(10):eaaz0948. https://doi.org/10.1126/sciadv.aaz0948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Liu X, Yang RN, Zhang L, Zhou J, Huang CM, Zou HH, Xiao ZH. Syntheses of new di-nuclear and tetra-nuclear lanthanide 9-anthracenecarboxylates: magnetocaloric effect, slow magnetic relaxation and luminescent properties. J Rare Earths. 2024;42(6):1101–9. https://doi.org/10.1016/j.jre.2023.07.018.

    Article  CAS  Google Scholar 

  119. Xie X, Li SF, Chen JY, Ding JN, He J, Liu ZW, Wang J-T, Liu YP. Tunable valley pseudospin and electron–phonon coupling in WSe2/1T-VSe2 heterostructures. ACS Appl Mater Interfaces. 2024;16(39):53220. https://doi.org/10.1021/acsami.4c11399.

    Article  PubMed  CAS  Google Scholar 

  120. Zhao C, Norden T, Zhang PY, Zhao PQ, Cheng YC, Sun F, Parry JP, Taheri P, Wang JQ, Yang YH, Scrace T, Kang K, Yang S, Miao G-X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat Nanotechnol. 2017;12(8):757. https://doi.org/10.1038/nnano.2017.68.

    Article  PubMed  CAS  Google Scholar 

  121. Xiong Y, Rudner MS, Song JCW. Multistable excitonic Stark effect. Phys Rev Res. 2022;4(2):023168. https://doi.org/10.1103/PhysRevResearch.4.023168.

    Article  CAS  Google Scholar 

  122. Li Q, Zhao XX, Deng LJ, Shi ZT, Liu S, Wei QL, Zhang LB, Cheng YC, Zhang L, Lu HP, Gao WB, Huang W, Qiu C-W, Xiang G, Pennycook SJ, Xiong QH, Loh KP, Peng B. Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano. 2020;14(4):4636–45. https://doi.org/10.1021/acsnano.0c00291.

    Article  PubMed  CAS  Google Scholar 

  123. Wu W, Liu MY, Zhou JP, Li JA, Zhang YX, Xu FY, Li X, Wu YP, Wu ZM, Kang JY. Chirality-dependent valley polarization in magnetic van der Waals heterostructures via spin-selective charge transfer. Nano Lett. 2024;24(21):6225. https://doi.org/10.1021/acs.nanolett.4c00503.

    Article  PubMed  CAS  Google Scholar 

  124. Li JA, Chen ZL, Zhou JP, Zhang YT, Li X, Wu ZM, Wu YP, Kang JY. Phase-dependent magnetic proximity modulations on valley polarization and splitting. ACS Nano. 2024;18(16):10921. https://doi.org/10.1021/acsnano.4c01526.

    Article  PubMed  CAS  Google Scholar 

  125. Soriano D, Marian D, Dubey P, Fiori G. Strain-induced valley transport in a CrBr3/WSe2/CrBr3 van der Waals heterostructure. Phys Rev B. 2024;109(11):115434. https://doi.org/10.1103/PhysRevB.109.115434.

    Article  CAS  Google Scholar 

  126. Liang X, Liu YQ, Zhong TJ, Yang T, Li J, Luo L, Dong G, Chen YH, Luo XL, Tang TT, Bi L. Mechanisms of manipulating valley splitting in MoTe2/MnS2 van der Waals heterostructure by electric field and strains. RSC Adv. 2024;14(15):10209. https://doi.org/10.1039/d4ra01013b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Behera SK, Bora M, Paul Chowdhury SS, Deb P. Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys Chem Chem Phys. 2019;21(46):25788. https://doi.org/10.1039/c9cp05252f.

    Article  PubMed  CAS  Google Scholar 

  128. Ciorciaro L, Kroner M, Watanabe K, Taniguchi T, Imamoglu A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure. Phys Rev Lett. 2020;124(19):197401. https://doi.org/10.1103/PhysRevLett.124.197401.

    Article  PubMed  CAS  Google Scholar 

  129. Zhang DX, Zhang YF, Zhou BZ. Nonvolatile electrical control of valley splitting by ferroelectric polarization switching in a two-dimensional AgBiP2S6/CrBr3 multiferroic heterostructure. Nanoscale. 2023;15(4):1718. https://doi.org/10.1039/D2NR04956B.

    Article  PubMed  CAS  Google Scholar 

  130. Farooq MU, Hong JS. Switchable valley splitting by external electric field effect in graphene/CrI3 heterostructures. NPJ 2D Mater Appl. 2019;3(1):3. https://doi.org/10.1038/s41699-019-0086-6.

    Article  CAS  Google Scholar 

  131. Yin ZB, Chen XY, Wang YP, Long MQ. The magnetic proximity effect at the MoS2/CrI3 interface. J Phys Condens Matter. 2022;34(3):035002. https://doi.org/10.1088/1361-648X/ac2c3c.

    Article  CAS  Google Scholar 

  132. Seyler KL, Zhong D, Huang B, Linpeng X, Wilson NP, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire MA, Fu K-MC, Xu XD. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 2018;18(6):3823. https://doi.org/10.1021/acs.nanolett.8b01105.

    Article  PubMed  CAS  Google Scholar 

  133. Zhang WL, Zhu HR, Zhang WQ, Wang J, Zhang TT, Yang SR, Shao B, Zuo X. Manipulation of valley-pseudospin in 2D WTe2/CrI3 van der Waals heterostructure by magnetic proximity effect. Appl Surf Sci. 2024;647:158986. https://doi.org/10.1016/j.apsusc.2023.158986.

    Article  CAS  Google Scholar 

  134. Pei Q, Zhou BZ, Mi WB, Cheng YC. Triferroic material and electrical control of valley degree of freedom. ACS Appl Mater Interfaces. 2019;11(13):12675. https://doi.org/10.1021/acsami.9b02095.

    Article  PubMed  CAS  Google Scholar 

  135. Dong XJ, Jia K, Ji WX, Li SS, Zhang CW. Realization of dual anomalous valley Hall effect in antiferromagnetic HfN2/MnPSe3 heterostructure. ACS Appl Electron Mater. 2024;6(2):679. https://doi.org/10.1021/acsaelm.3c01032.

    Article  CAS  Google Scholar 

  136. Liu CX, Qi XL, Dai X, Fang Z, Zhang SC. Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells. Phys Rev Lett. 2008;101(14):146802. https://doi.org/10.1103/PhysRevLett.101.146802.

    Article  PubMed  CAS  Google Scholar 

  137. Chang CZ, Zhang JS, Feng X, Shen J, Zhang ZC, Guo MH, Li K, Ou YB, Wei P, Wang LL, Ji ZQ, Feng Y, Ji SH, Chen X, Jia JF, Dai X, Fang Z, Zhang SC, He K, Wang YY, Lu L, Ma XC, Xue QK. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 2013;340(6129):167. https://doi.org/10.1126/science.1234414.

    Article  PubMed  CAS  Google Scholar 

  138. Zhang YL, Li RH, Bai YX, Zhang ZQ, Huang BB, Dai Y, Niu CW. Floquet quantum anomalous Hall effect with tunable and high Chern numbers in two-dimensional antiferromagnet KMnBi. Nano Lett. 2025;25(11):4180. https://doi.org/10.1021/acs.nanolett.4c05226.

    Article  PubMed  CAS  Google Scholar 

  139. Bai YX, Zou XR, Chen ZQ, Li RH, Yin H, Dai Y, Huang BB, Niu CW. Light-induced quantum anomalous Hall effect in kagome noncollinear antiferromagnets. Phys Rev B. 2025;111(5):054407. https://doi.org/10.1103/PhysRevB.111.054407.

    Article  CAS  Google Scholar 

  140. Irfan M, Sattar A, Iqbal Bashir A, Mustafa H, Khan SN, Latif H, Pang WH, Qin SY. A potential candidate material for quantum anomalous Hall effect: heterostructures of ferromagnetic insulator and graphene. Phys B. 2024;673:415439. https://doi.org/10.1016/j.physb.2023.415439.

    Article  CAS  Google Scholar 

  141. Li JX, Rashetnia M, Lohmann M, Koo J, Xu YM, Zhang X, Watanabe K, Taniguchi T, Jia S, Chen X, Yan BH, Cui Y-T, Shi J. Proximity-magnetized quantum spin Hall insulator: monolayer 1 T’ WTe2/Cr2Ge2Te6. Nat Commun. 2022;13(1):5134. https://doi.org/10.1038/s41467-022-32808-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Yao YT, Xu SY, Chang TR. Atomic scale quantum anomalous hall effect in monolayer graphene/MnBi2Te4 heterostructure. Mater Horiz. 2024;11(14):3420. https://doi.org/10.1039/D4MH00165F.

    Article  PubMed  CAS  Google Scholar 

  143. Song A, Zhang JN, Chen YQ, Zhang ZZ, Cheng XJ, Xu RJ, Zhuang WZ, Sun WX, Zhang Y, Zhang X, Chen ZQ, Song FQ, Zhang Y, Zhai XC, Xu YB, Zhao WS, Zhang R, Wang XF. Large anomalous Hall effect in a noncoplanar magnetic heterostructure. Adv Funct Mater. 2025. https://doi.org/10.1002/adfm.202422040.

    Article  Google Scholar 

  144. Ou YX, Yanez W, Xiao R, Stanley M, Ghosh S, Zheng BY, Jiang W, Huang Y-S, Pillsbury T, Richardella A, Liu C, Low T, Crespi VH, Mkhoyan KA, Samarth N. ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics. Nat Commun. 2022;13(1):2972. https://doi.org/10.1038/s41467-022-30738-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Zhao B, Karpiak B, Hoque AM, Dhagat P, Dash SP. Strong perpendicular anisotropic ferromagnet Fe3GeTe2/graphene van der Waals heterostructure. J Phys D Appl Phys. 2023;56(9):094001. https://doi.org/10.1088/1361-6463/acb801.

    Article  CAS  Google Scholar 

  146. Bora M, Behera SK, Samal P, Deb P. Magnetic proximity induced valley-contrasting quantum anomalous Hall effect in a graphene-CrBr3 van der Waals heterostructure. Phys Rev B. 2022;105(23):235422. https://doi.org/10.1103/PhysRevB.105.235422.

    Article  CAS  Google Scholar 

  147. Wu H, Yang L, Zhang GJ, Jin W, Xiao BC, Zhang WF, Chang HX. Robust magnetic proximity induced anomalous Hall effect in a room temperature van der Waals ferromagnetic semiconductor based 2D heterostructure. Small Methods. 2024;8(9):2301524. https://doi.org/10.1002/smtd.202301524.

    Article  CAS  Google Scholar 

  148. Yao X, Gao B, Han MG, Jain D, Moon J, Kim JW, Zhu YM, Cheong S-W, Oh S. Record high-proximity-induced anomalous Hall effect in (BixSb1–x)2Te3 thin film grown on CrGeTe3 substrate. Nano Lett. 2019;19(7):4567. https://doi.org/10.1021/acs.nanolett.9b01495.

    Article  PubMed  CAS  Google Scholar 

  149. Chen SW, Tang ZT, Fang MQ, Sun R, Zhang XT, Xiao LC, Mohajerani SS, Liu N, Zhang YZ, Sarkar AS, Sun DL, Strauf S, Yang EH. Magnetic switching in monolayer 2D diluted magnetic semiconductors via spin-to-spin conversion. Adv Funct Mater. 2025. https://doi.org/10.1002/adfm.202418647.

    Article  PubMed  Google Scholar 

  150. Murali AS, Murali S, Beena S. The role of engineered MoS2 and MoSe2 transition metal dichalcogenides in electrochemical sensors and batteries: a review. Tungsten. 2024;7(2):215–42. https://doi.org/10.1007/s42864-024-00304-x.

    Article  Google Scholar 

  151. Sun L, Li KS, Li HW, Yu DB, Luo Y, Jin JL, Lu S, Quan NT. Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons. Rare Met. 2024;42(2):602–5. https://doi.org/10.1007/s12598-016-0750-3.

    Article  CAS  Google Scholar 

  152. Li YR, Yang MY, Yu GQ, Cui BS, Liu JB, Li YL, Shao QM, Luo J. XOR spin logic operated by unipolar current based on field-free spin–orbit torque switching induced by a lateral interface. Rare Met. 2024;43(8):3868–75. https://doi.org/10.1007/s12598-024-02713-w.

    Article  CAS  Google Scholar 

  153. Choi GS, Park S, An ES, Bae J, Shin I, Kang BT, Won CJ, Cheong SW, Lee HW, Lee GH, Cho WJ, Kim JS. Highly efficient room-temperature spin-orbit-torque switching in a van der Waals heterostructure of topological insulator and ferromagnet. Adv Sci. 2024;11(21):2400893. https://doi.org/10.1002/advs.202400893.

    Article  CAS  Google Scholar 

  154. Lohmann M, Wickramaratne D, Moon J, Noyan M, Chuang HJ, Jonker BT, Li CH. Highly efficient spin–orbit torque switching in Bi2Se3/Fe3GeTe2 van der Waals heterostructures. ACS Nano. 2024;18(1):680. https://doi.org/10.1021/acsnano.3c09041.

    Article  PubMed  CAS  Google Scholar 

  155. Shin I, Cho WJ, An ES, Park S, Jeong HW, Jang S, Baek WJ, Park SY, Yang DH, Seo JH, Kim GY, Ali MN, Choi SY, Lee HW, Kim JS, Kim SD, Lee GH. Spin–orbit torque switching in an all-van der Waals heterostructure. Adv Mater. 2022;34(8):2101730. https://doi.org/10.1002/adma.202101730.

    Article  CAS  Google Scholar 

  156. Guillet T, Galceran R, Sierra JF, Belarre FJ, Ballesteros B, Costache MV, Dosenovic D, Okuno H, Marty A, Jamet M, Bonell F, Valenzuela SO. Spin–orbit torques and magnetization switching in (Bi,Sb)2Te3/Fe3GeTe2 heterostructures grown by molecular beam epitaxy. Nano Lett. 2024;24(3):822. https://doi.org/10.1021/acs.nanolett.3c03291.

    Article  PubMed  CAS  Google Scholar 

  157. Wang HY, Wu H, Zhang J, Liu YJ, Chen DD, Pandey CD, Yin JL, Wei DH, Lei N, Shi SY, Lu HC, Li P, Fert A, Wang KL, Nie TX, Zhao WS. Room temperature energy-efficient spin-orbit torque switching in two-dimensional van der Waals Fe3GeTe2 induced by topological insulators. Nat Commun. 2023;14(1):5173. https://doi.org/10.1038/s41467-023-40714-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Alghamdi M, Lohmann M, Li JX, Jothi PR, Shao QM, Aldosary M, Su T, Fokwa BPT, Shi J. Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 2019;19(7):4400. https://doi.org/10.1021/acs.nanolett.9b01043.

    Article  PubMed  CAS  Google Scholar 

  159. Wang X, Tang J, Xia XX, He CL, Zhang JW, Liu YZ, Wan CH, Fang C, Guo CY, Yang WL, Guang Y, Zhang XM, Xu HJ, Wei JW, Liao MZ, Lu XB, Feng JF, Li XX, Peng Y, Wei HX, Yang R, Shi DX, Zhang XX, Han Z, Zhang ZD, Zhang GY, Yu GQ, Han XF. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv. 2019;5(8):eaaw8904. https://doi.org/10.1126/sciadv.aaw8904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Zhao B, Pandey L, Ali K, Wang E, Polley CM, Thiagarajan B, Makk P, Guimarães MHD, Dash SP. Field-free spin–orbit torque switching of canted van der Waals magnets. ACS Nano. 2025;19(14):13817. https://doi.org/10.1021/acsnano.4c16826.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Kajale SN, Nguyen T, Chao CA, Bono DC, Boonkird A, Li MD, Sarkar D. Current-induced switching of a van der Waals ferromagnet at room temperature. Nat Commun. 2024;15(1):1485. https://doi.org/10.1038/s41467-024-45586-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Yun C, Guo HR, Lin ZC, Peng LC, Liang ZY, Meng M, Zhang B, Zhao ZJ, Wang LR, Ma YF, Liu YJ, Li WW, Ning S, Hou YL, Yang JB, Luo ZC. Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet. Sci Adv. 2023;9(49):eadj3955. https://doi.org/10.1126/sciadv.adj3955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Li WH, Zhu WK, Zhang GJ, Wu H, Zhu SG, Li RZ, Zhang EZ, Zhang XM, Deng YC, Zhang J, Zhao LX, Chang HX, Wang KY. Room-temperature van der Waals ferromagnet switching by spin-orbit torques. Adv Mater. 2023;35(51):2303688. https://doi.org/10.1002/adma.202303688.

    Article  CAS  Google Scholar 

  164. Shi GY, Wang F, Liu YK, Li ZH, Tan HR, Yang DS, Soumyanarayanan A, Yang H. Field-free manipulation of two-dimensional ferromagnet CrTe2 by spin–orbit torques. Nano Lett. 2024;24(24):7302. https://doi.org/10.1021/acs.nanolett.4c01366.

    Article  CAS  Google Scholar 

  165. Zhang W, Zhang AZ, Zhang LL, Cui RJ, Lv BH, Xiao ZY, Li D, Quan ZY, Xu XH. Light modulated magnetism and spin–orbit torque in a heavy metal/ferromagnet heterostructure based on van der Waals-layered ferroelectric materials. Appl Phys Lett. 2023;123(9):092406. https://doi.org/10.1063/5.0160084.

    Article  CAS  Google Scholar 

  166. Zhou B, Liu YT, Li SM, Fan WB, Liao XF, He JY, Yu HY, Liu ZW. Phase precipitation and magnetic properties of melt-spun ternary Gd2Fe14B alloy and advantages of gadolinium substitution in Y2Fe14B alloy. J Rare Earths. 2023;41(7):1058–67. https://doi.org/10.1016/j.jre.2022.04.001.

    Article  CAS  Google Scholar 

  167. Yang Y, Li B, Chen MY, Wu ZY, Zheng RY, Tan XH, Xu H. Enhanced magnetic properties of Ce17Fe76.5Co1Zr0.5B6 alloys by magnetic field heat treatment. J Rare Earths. 2023;41(9):1360–6. https://doi.org/10.1016/j.jre.2022.06.015.

    Article  CAS  Google Scholar 

  168. Du JT, He K, Chen JY, He YK, He M, Xu XT, Qu Z, Gu L, Zhang QH, Duan XD, Huang MY, Jiang CB, Li B, Yang SX. The spontaneous and tunable exchange bias in above room-temperature van der Waals magnet. Adv Funct Mater. 2025. https://doi.org/10.1002/adfm.202501047.

    Article  Google Scholar 

  169. Ni KP, Zhou JY, Chen Y, Cheng HH, Cao ZY, Guo JM, Söll A, Hou XY, Shan L, Sofer Z, Yang MM, Yue Y, Xu JS, Tian ML, Gao WS, Jiang YX, Fang Y, Liu X. Spin canting promoted manipulation of exchange bias in a perpendicular coupled Fe3GaTe2/CrSBr magnetic van der Waals heterostructure. ACS Nano. 2025;19(2):2624. https://doi.org/10.1021/acsnano.4c14452.

    Article  PubMed  CAS  Google Scholar 

  170. Puthirath Balan A, Kumar A, Scholz T, Lin ZC, Shahee A, Fu S, Denneulin T, Vas J, Kovács A, Dunin-Borkowski RE, Wang HI, Yang JB, Lotsch BV, Nowak U, Kläui M. Harnessing van der Waals CrPS4 and surface oxides for nonmonotonic preset field induced exchange bias in Fe3GeTe2. ACS Nano. 2024;18(11):8383. https://doi.org/10.1021/acsnano.3c13034.

    Article  PubMed  CAS  Google Scholar 

  171. Zhang CY, Zhang ZM, Wang DH, Hu Y. Strain-controlled Néel temperature and exchange bias enhancements in IrMn/CoFeB bilayers. Appl Phys Lett. 2024;124(8):082407. https://doi.org/10.1063/5.0193095.

    Article  CAS  Google Scholar 

  172. Fang JZ, Cui HN, Wang S, Lu JD, Zhu GY, Liu XJ, Qin MS, Wang JK, Wu ZN, Wu YF, Wang SG, Zhang ZS, Wei Z, Zhang J, Lin BC, Liao ZM, Yu D. Exchange bias in the van der Waals heterostructure MnBi2Te4/Cr2Ge2Te6. Phys Rev B. 2023;107(4):L041107. https://doi.org/10.1103/PhysRevB.107.L041107.

    Article  CAS  Google Scholar 

  173. Ying Z, Chen B, Li CF, Wei BY, Dai Z, Guo FY, Pan DF, Zhang HJ, Wu D, Wang XF, Zhang S, Fei FC, Song FQ. Large exchange bias effect and coverage-dependent interfacial coupling in CrI3/MnBi2Te4 van der Waals heterostructures. Nano Lett. 2023;23(3):765. https://doi.org/10.1021/acs.nanolett.2c02882.

    Article  PubMed  CAS  Google Scholar 

  174. Wang ZX, Zheng HF, Chen A, Ma L, Hong SJ, Rodriguez EE, Woehl TJ, Shi S-F, Parker T, Ren SQ. Room-temperature CrI3 magnets through lithiation. ACS Nano. 2024;18(34):23058. https://doi.org/10.1021/acsnano.4c02613.

    Article  PubMed  CAS  Google Scholar 

  175. Gao ZS, Xin BJ, Chen JB, Liu ZC, Yao R, Ai W, He YY, Xu LY, Cheng T-H, Wang W-H, Luo F. Above-room-temperature ferromagnetism in copper-doped two-dimensional chromium-based nanosheets. ACS Nano. 2024;18(1):703. https://doi.org/10.1021/acsnano.3c08998.

    Article  PubMed  CAS  Google Scholar 

  176. Wu ZB, Shen Z, Xue YF, Song CS. Strain-induced topological phase transition and enhanced Curie temperature in MnBi2Te4/CrI3 heterojunction. Phys Rev Mater. 2022;6(1):014011. https://doi.org/10.1103/PhysRevMaterials.6.014011.

    Article  CAS  Google Scholar 

  177. Dai HW, Cheng H, Cai MH, Hao QH, Xing YT, Chen HJ, Chen XD, Wang X, Han J-B. Enhancement of the coercive field and exchange bias effect in Fe3GeTe2/MnPX3 (X = S and Se) van der Waals heterostructures. ACS Appl Mater Interfaces. 2021;13(20):24314. https://doi.org/10.1021/acsami.1c05265.

    Article  PubMed  CAS  Google Scholar 

  178. Zhang GJ, Wu H, Yang L, Chen Z, Jin W, Xiao BC, Zhang WF, Song CS, Chang HX. Above-room-temperature ferromagnetism regulation in two-dimensional heterostructures by van der Waals interfacial magnetochemistry. J Am Chem Soc. 2024;146(49):34070. https://doi.org/10.1021/jacs.4c13391.

    Article  PubMed  CAS  Google Scholar 

  179. Zhou WY, Bishop AJ, Zhang XS, Robinson K, Lyalin I, Li ZL, Bailey-Crandell R, Cham TMJ, Cheng SY, Luo YK, Ralph DC, Muller DA, Kawakami RK. Tuning the Curie temperature of a two-dimensional magnet/topological insulator heterostructure to above room temperature by epitaxial growth. Phys Rev Mater. 2023;7(10):104004. https://doi.org/10.1103/PhysRevMaterials.7.104004.

    Article  CAS  Google Scholar 

  180. Wang ZA, Xue WS, Yan FG, Zhu WK, Liu Y, Zhang XH, Wei ZM, Chang K, Yuan Z, Wang KY. Selectively controlled ferromagnets by electric fields in van der Waals ferromagnetic heterojunctions. Nano Lett. 2023;23(2):710. https://doi.org/10.1021/acs.nanolett.2c04796.

    Article  PubMed  CAS  Google Scholar 

  181. Khan I, Ahmad J, Mazhar ME, Hong JS. Strain tuning of the Curie temperature and valley polarization in two dimensional ferromagnetic WSe2/CrSnSe3 heterostructure. Nanotechnology. 2021;32(37):375708. https://doi.org/10.1088/1361-6528/ac05e9.

    Article  CAS  Google Scholar 

  182. Lu Y, Chen J, Zhou F, Lau YC, Wiśniewski P, Kaczorowski D, Xi XK, Wang WH. Angular dependence of large negative magnetoresistance in a field-induced Weyl semimetal candidate HoAuSn. Rare Met. 2025;44(6):4302–8. https://doi.org/10.1007/s12598-024-03131-8.

    Article  CAS  Google Scholar 

  183. Obata R, Sun HM, Samanta K, Shahed NA, Kosugi M, Kikkawa T, Abdallah A, Watanabe K, Taniguchi T, Suenaga K, Saitoh E, Maruyama S, Hirakawa K, Belashchenko KD, Tsymbal EY, Haruyama J. Pseudotunnel magnetoresistance in twisted van der Waals Fe3GeTe2 homojunctions. Adv Mater. 2025;37(8):2411459. https://doi.org/10.1002/adma.202411459.

    Article  CAS  Google Scholar 

  184. Tao LL, Dou MB, Wang XJ, Tsymbal EY. Ferroelectric spin-orbit valve effect. Phys Rev Lett. 2025;134(7):076801. https://doi.org/10.1103/PhysRevLett.134.076801.

    Article  PubMed  CAS  Google Scholar 

  185. Wang XY, Zhang LH, He M, Li Q, Song WQ, Yang KL, Wang SX, Taniguchi T, Watanabe K, Zhang L, Shi W, Cheng YC, Qu Z, Pan J, Wang Z. Large tunneling magnetoresistance in nonvolatile 2D hybrid spin filters. Phys Rev Lett. 2025;134(7):077001. https://doi.org/10.1103/PhysRevLett.134.077001.

    Article  PubMed  CAS  Google Scholar 

  186. Yin HF, Zhang PZ, Jin W, Di BY, Wu H, Zhang GJ, Zhang WF, Chang HX. Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices. CrystEngComm. 2023;25(9):1339. https://doi.org/10.1039/D2CE01695H.

    Article  CAS  Google Scholar 

  187. Zhu SG, Lin HL, Zhu WK, Li WH, Zhang J, Wang KY. Voltage tunable sign inversion of magnetoresistance in van der Waals Fe3GeTe2/MoSe2/Fe3GeTe2 tunnel junctions. Appl Phys Lett. 2024;124(22):222401. https://doi.org/10.1063/5.0202525.

    Article  CAS  Google Scholar 

  188. Pan HY, Singh AK, Zhang CS, Hu XQ, Shi JY, An LH, Wang NZ, Duan RH, Liu Z, Parkin SSP, Deb P, Gao WB. Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures. InfoMat. 2024;6(6):e12504. https://doi.org/10.1002/inf2.12504.

    Article  CAS  Google Scholar 

  189. Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, Morpurgo AF. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018;18(7):4303. https://doi.org/10.1021/acs.nanolett.8b01278.

    Article  PubMed  CAS  Google Scholar 

  190. Zhu WK, Zhu YM, Zhou T, Zhang XP, Lin HL, Cui QR, Yan FG, Wang Z, Deng YC, Yang HX, Zhao LX, Žutić I, Belashchenko KD, Wang KY. Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nat Commun. 2023;14(1):5371. https://doi.org/10.1038/s41467-023-41077-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Singh AK, Gao WB, Deb P. Tunable long-range spin transport in a van der Waals Fe3GeTe2/WSe2/Fe3GeTe2 spin valve. Phys Chem Chem Phys. 2024;26(2):895. https://doi.org/10.1039/D3CP04955H.

    Article  PubMed  CAS  Google Scholar 

  192. Guo XH, Zhu L, Cao ZL, Yao KL. Tunable multiple nonvolatile resistance states in a MnSe-based van der Waals multiferroic tunnel junction. Phys Chem Chem Phys. 2024;26(4):3531. https://doi.org/10.1039/D3CP05029G.

    Article  PubMed  CAS  Google Scholar 

  193. Lin HL, Yan FG, Hu C, Lv QS, Zhu WK, Wang Z, Wei ZM, Chang K, Wang KY. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl Mater Interfaces. 2020;12(39):43921. https://doi.org/10.1021/acsami.0c12483.

    Article  PubMed  CAS  Google Scholar 

  194. Dong XL, Shen XM, Sun XW, Bai YH, Yan Z, Xu XH. Voltage-tunable giant nonvolatile multiple-state resistance in sliding-interlayer ferroelectric h-BN van der Waals multiferroic tunnel junction. Phys Rev B. 2023;108(8):085427. https://doi.org/10.1103/PhysRevB.108.085427.

    Article  CAS  Google Scholar 

  195. Jin W, Zhang GJ, Wu H, Yang L, Zhang WF, Chang HX. Room-temperature and tunable tunneling magnetoresistance in Fe3GaTe2-based 2D van der Waals heterojunctions. ACS Appl Mater Interfaces. 2023;15(30):36519. https://doi.org/10.1021/acsami.3c06167.

    Article  PubMed  CAS  Google Scholar 

  196. Yan Z, Yang RX, Fang C, Lu WT, Xu XH. Giant electrode effect on tunneling magnetoresistance and electroresistance in van der Waals intrinsic multiferroic tunnel junctions using VS2. Phys Rev B. 2024;109(20):205409. https://doi.org/10.1103/PhysRevB.109.205409.

    Article  CAS  Google Scholar 

  197. Jin W, Zhang GJ, Wu H, Yang L, Zhang WF, Chang HX. Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale. 2023;15(11):5371. https://doi.org/10.1039/D2NR06886A.

    Article  PubMed  CAS  Google Scholar 

  198. Zhang YX, Li XL, Sheng JC, Yu SJ, Zhang J, Su YR. Multilevel resistance states in van der Waals multiferroic tunnel junctions above room temperature. Appl Phys Lett. 2023;123(19):192402. https://doi.org/10.1063/5.0166878.

    Article  CAS  Google Scholar 

  199. Han JC, Lv C, Yang W, Wang XH, Wei GD, Zhao WS, Lin XY. Large tunneling magnetoresistance in van der Waals magnetic tunnel junctions based on FeCl2 films with interlayer antiferromagnetic couplings. Nanoscale. 2023;15(5):2067. https://doi.org/10.1039/D2NR05684D.

    Article  PubMed  CAS  Google Scholar 

  200. Li K, Guo YZ, Robertson J, Zhao WS, Lu HC. Designing van der Waals magnetic tunnel junctions with high tunnel magnetoresistance via Brillouin zone filtering. Nanoscale. 2024;16(41):19228. https://doi.org/10.1039/D4NR02717E.

    Article  PubMed  CAS  Google Scholar 

  201. Yang J, Wu BC, Zhou J, Lu J, Yang JB, Shen L. Full electrical control of multiple resistance states in van der Waals sliding multiferroic tunnel junctions. Nanoscale. 2023;15(39):16103. https://doi.org/10.1039/D3NR03951J.

    Article  PubMed  CAS  Google Scholar 

  202. Chen YL, Samanta K, Shahed NA, Zhang HJ, Fang C, Ernst A, Tsymbal EY, Parkin SSP. Twist-assisted all-antiferromagnetic tunnel junction in the atomic limit. Nature. 2024;632(8027):1045. https://doi.org/10.1038/s41586-024-07818-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Cui Z, Sa BS, Xue KH, Zhang YG, Xiong R, Wen CL, Miao XS, Sun ZM. Magnetic-ferroelectric synergic control of multilevel conducting states in van der Waals multiferroic tunnel junctions towards in-memory computing. Nanoscale. 2024;16(3):1331. https://doi.org/10.1039/D3NR04712A.

    Article  PubMed  CAS  Google Scholar 

  204. Ghising P, Biswas C, Lee YH. Graphene spin valves for spin logic devices. Adv Mater. 2023;35(23):2209137. https://doi.org/10.1002/adma.202209137.

    Article  CAS  Google Scholar 

  205. Sarkar S, Oh S, Newton PJ, Li Y, Zhu YR, Ghani MA, Yan H, Jeong HY, Wang Y, Chhowalla M. Spin injection in graphene using ferromagnetic van der Waals contacts of indium and cobalt. Nat Electron. 2025;8(3):215. https://doi.org/10.1038/s41928-024-01330-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Zhao B, Ngaloy R, Ghosh S, Ershadrad S, Gupta R, Ali K, Hoque AM, Karpiak B, Khokhriakov D, Polley C, Thiagarajan B, Kalaboukhov A, Svedlindh P, Sanyal B, Dash SP. A room-temperature spin-valve with van der Waals ferromagnet Fe5GeTe2/graphene heterostructure. Adv Mater. 2023;35(16):2209113. https://doi.org/10.1002/adma.202209113.

    Article  CAS  Google Scholar 

  207. Huang SM, Zhu LY, Zhao YX, Watanabe K, Taniguchi T, Xiao J, Wang L, Mei JW, Huang HL, Zhang F, Wang MY, Fu DY, Zhang R. Giant magnetoresistance induced by spin-dependent orbital coupling in Fe3GeTe2/graphene heterostructures. Nat Commun. 2025;16(1):2866. https://doi.org/10.1038/s41467-025-58224-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Pan HY, Zhang CS, Shi JY, Hu XQ, Wang NZ, An LH, Duan RH, Deb P, Liu Z, Gao WB. Room-temperature lateral spin valve in graphene/Fe3GaTe2 van der Waals heterostructures. ACS Mater Lett. 2023;5(8):2226. https://doi.org/10.1021/acsmaterialslett.3c00510.

    Article  CAS  Google Scholar 

  209. Zheng N, Chen JZ. Lateral spin filter realized by monolayer Fe3GaTe2 and Fe3GaTe2/graphene van der Waals heterostructures. Solid State Commun. 2024;389:115584. https://doi.org/10.1016/j.ssc.2024.115584.

    Article  CAS  Google Scholar 

  210. Yang HZ, Gobbi M, Herling F, Pham VT, Calavalle F, Martín-García B, Fert A, Hueso LE, Casanova F. A seamless graphene spin valve based on proximity to van der Waals magnet Cr2Ge2Te6. Nat Electron. 2025;8(1):15. https://doi.org/10.1038/s41928-024-01267-0.

    Article  CAS  Google Scholar 

  211. Ngaloy R, Zhao B, Ershadrad S, Gupta R, Davoudiniya M, Bainsla L, Sjöström L, Hoque MA, Kalaboukhov A, Svedlindh P, Sanyal B, Dash SP. Strong in-plane magnetization and spin polarization in (Co0.15Fe0.85)5GeTe2/graphene van der Waals heterostructure spin-valve at room temperature. ACS Nano. 2024;18(7):5240. https://doi.org/10.1021/acsnano.3c07462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Tseng C-C, Song TC, Jiang QN, Lin Z, Wang C, Suh J, Watanabe K, Taniguchi T, McGuire MA, Xiao D, Chu J-H, Cobden DH, Xu XD, Yankowitz M. Gate-tunable proximity effects in graphene on layered magnetic insulators. Nano Lett. 2022;22(21):8495. https://doi.org/10.1021/acs.nanolett.2c02931.

    Article  PubMed  CAS  Google Scholar 

  213. Jeong J, Kiem DH, Guo D, Duan RH, Watanabe K, Taniguchi T, Liu Z, Han MJ, Zheng SJ, Yang H. Spin-selective memtransistors with magnetized graphene. Adv Mater. 2024;36(15):2310291. https://doi.org/10.1002/adma.202310291.

    Article  CAS  Google Scholar 

  214. Qiu ZZ, Holwill M, Olsen T, Lyu P, Li J, Fang HY, Yang HM, Kashchenko M, Novoselov KS, Lu J. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nat Commun. 2021;12(1):70. https://doi.org/10.1038/s41467-020-20376-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Chen YJ, Wang ZJ, Du JT, Si C, Jiang CB, Yang SX. Wrinkled rhenium disulfide for anisotropic nonvolatile memory and multiple artificial neuromorphic synapses. ACS Nano. 2024;18(44):30871. https://doi.org/10.1021/acsnano.4c11898.

    Article  PubMed  CAS  Google Scholar 

  216. Xu HY, Xie RZ, Miao JS, Zhang ZH, Ge HN, Shi XM, Luo M, Wang JJ, Li TX, Fu X, Ho JC, Zhou P, Wang F, Hu WD. Critical band-to-band-tunnelling based optoelectronic memory. Light Sci Appl. 2025;14(1):72. https://doi.org/10.1038/s41377-025-01756-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. He K, Li BL, Nie JH, Hou YL, Huan CM, Hong M, Du JT, Chen Y, Tang JM, Yi C, Feng Y, Liu SJ, Wu SM, Liu MM, Zhang HM, Guo YK, Wu RX, Li J, Liu XQ, Liu Y, Wei ZM, Liao L, Li B, Duan XD. Two-dimensional Cr3Te4/WS2/Fe3GeTe2/WTe2 magnetic memory with field-free switching and low power consumption. Adv Mater. 2025;37(13):2419939. https://doi.org/10.1002/adma.202419939.

    Article  CAS  Google Scholar 

  218. Gu PF, Wang C, Su D, Dong ZH, Wang QY, Han Z, Watanabe K, Taniguchi T, Ji W, Sun Y, Ye Y. Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect. Nat Commun. 2023;14(1):3221. https://doi.org/10.1038/s41467-023-39004-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Garcia-Adeva AJ, Apiñaniz E, Herrero A, Aseguinolaza IR, Oleaga A. First-principle calculations of magnetic properties of Ho6(Fe, Mn)Bi2 compounds. Rare Met. 2024;43(11):6034–47. https://doi.org/10.1007/s12598-024-02866-8.

    Article  CAS  Google Scholar 

  220. Liu K, Li YZ, Wu YX, Ying PJ, He R, Fu CG, Zhang Y, Zhu TJ. Application requirements and design strategies of Bi2Te3-based thermoelectric devices for low-quality thermal energy. cMat. 2024;1(1):e11. https://doi.org/10.1002/cmt2.11.

    Article  Google Scholar 

  221. Dai YD, Xiong JL, Ge YF, Cheng B, Wang LZ, Wang PF, Liu ZL, Yan SN, Zhang CW, Xu XH, Shi YG, Cheong S-W, Xiao C, Yang SA, Liang S-J, Miao F. Interfacial magnetic spin Hall effect in van der Waals Fe3GeTe2/MoTe2 heterostructure. Nat Commun. 2024;15(1):1129. https://doi.org/10.1038/s41467-024-45318-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Wu QH, Shang WQ, Wang C, Wu DD, Li J, Ding GQ. Excellent spin diode and spin-dependent Seebeck effects in hetero-junctions based on ferromagnetic Cr3M4 (M = Se, Te). J Phys D Appl Phys. 2024;57(14):145002. https://doi.org/10.1088/1361-6463/ad1b31.

    Article  CAS  Google Scholar 

  223. Dang JC, Wu TY, Yan SH, Watanabe K, Taniguchi T, Lei HC, Zhang XX. Electrical switching of spin-polarized light-emitting diodes based on a 2D CrI3/hBN/WSe2 heterostructure. Nat Commun. 2024;15(1):6799. https://doi.org/10.1038/s41467-024-51287-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Lin NX, Sheng FL, Chen X, Hu XL, Zhuang NF. Epitaxy growth of pure phase CeFeO3 thin films with high magneto-optical performance and strong vertical magnetic anisotropy. J Rare Earths. 2023;41(12):2018–24. https://doi.org/10.1016/j.jre.2023.03.015.

    Article  CAS  Google Scholar 

  225. Zhang WL, Zhou H, Ou MG, Sun DH, Yang CL. Luminescence and magnetic properties of bifunctional nanoparticles composited by nitrogen-doped graphene quantum dots and gadolinium. J Rare Earths. 2024;42(4):716–23. https://doi.org/10.1016/j.jre.2023.05.005.

    Article  CAS  Google Scholar 

  226. Chen JM, Cheng ZX, Chen JH, Li ML, Jia XH, Ran YQ, Zhang Y, Li YP, Yu TJ, Dai L. Spin-enhanced self-powered light helicity detecting based on vertical WSe2–CrI3 p–n heterojunction. ACS Nano. 2024;18(38):26261. https://doi.org/10.1021/acsnano.4c08185.

    Article  CAS  Google Scholar 

  227. Tang Y, Ping Y, Yang XX, Xing JB, Chen JB, Wang X, Lu JB, Jing HM, Liu KQ, Wu JX, Zhou X, Zhai TY, Xu H. Synthesis of highly anisotropic 2D insulator CrOCl nanosheets for interfacial symmetry breaking in isotropic 2D semiconductors. Adv Mater. 2025;37(5):2405358. https://doi.org/10.1002/adma.202405358.

    Article  CAS  Google Scholar 

  228. Wu XK, Tang W, Zhao D, Dai SC, Qi L, Li ZL, Weng XL, Kang CX, Ruan SC, Ramiere A, Zeng YJ. Revealing light-magnetism coupling via anomalous Hall effect and magneto-photoresponse in proximity-coupled CrSBr/Graphene heterostructures. ACS Nano. 2025;19(6):6271. https://doi.org/10.1021/acsnano.4c15773.

    Article  PubMed  CAS  Google Scholar 

  229. Han XY, Yi HT, Oh S, Wu L. Magneto-optical effects of an artificially layered ferromagnetic topological insulator with a TC of 160 K. Nano Lett. 2024;24(3):914. https://doi.org/10.1021/acs.nanolett.3c04103.

    Article  PubMed  CAS  Google Scholar 

  230. Cheng Y, Xu T, Tian D, He X, Dong YQ, Bai H, Zhao L, Jin HN, Zhang SL, Li WB, Valvidares M, Yu P, Jiang WJ. Room-temperature magnetoelectric switching and magnetoelectric memory driven by gate voltage. Phys Rev X. 2025;15(1):011060. https://doi.org/10.1103/PhysRevX.15.011060.

    Article  CAS  Google Scholar 

  231. Quan YY, Bai F, Dong Y, Zhang TL, Jiang CB. Artificial neural network model assisted optimization of preparation of Sm-Co nanoparticles. Chin J Rare Met. 2024;48(03):305–16. https://doi.org/10.13373/j.cnki.cjrm.XY22050011.

    Article  Google Scholar 

  232. Shen TT, Hassan O, Dilley NR, Datta S, Camsari KY, Appenzeller J. A magnetoelectric memory device based on pseudo-magnetization. J Appl Phys. 2023;134(3):033901. https://doi.org/10.1063/5.0140695.

    Article  CAS  Google Scholar 

  233. Zhu T, Lu XZ, Aoyama T, Fujita K, Nambu Y, Saito T, Takatsu H, Kawasaki T, Terauchi T, Kurosawa S, Yamaji A, Li HB, Tassel C, Ohgushi K, Rondinelli JM, Kageyama H. Thermal multiferroics in all-inorganic quasi-two-dimensional halide perovskites. Nat Mater. 2024;23(2):182. https://doi.org/10.1038/s41563-023-01759-y.

    Article  PubMed  CAS  Google Scholar 

  234. Xing Y, Ye HS, Du GW, Li X, Miao LP, Zhang JC, Luo X, Chen XY, Ye HR, Shen A, Wang ZC, You YM, Dong S, Li LL. Tunable magnetoelectricity and polarity in van der Waals antiferromagnetic CuCr1−xFexP2S6. Nanoscale Horiz. 2025;10(3):561. https://doi.org/10.1039/D4NH00620H.

    Article  PubMed  CAS  Google Scholar 

  235. Yamaguchi D, Kitaori A, Nagaosa N, Tokura Y. Current control of spin helicity and nonreciprocal charge transport in a multiferroic conductor. Adv Mater. 2025;37(20):2420614. https://doi.org/10.1002/adma.202420614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 12104050 and 62375018), the National Key Research and Development Program of China (No. 2022YFA1203900), and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Contributions

Dan Guo organized all the data and write the manuscript. Xu-Yan Rui, Shuang Du, and Qing-Rong Liang assisted to organize data. Shou-Jun Zheng and Heejun Yang supervised the project. All authors participated in scientific discussions and contributed on the manuscript.

Corresponding author

Correspondence to Shou-Jun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Rui, XY., Du, S. et al. Emerging spintronics applications of magnetic van der Waals heterostructures. Rare Met. (2025). https://doi.org/10.1007/s12598-025-03478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s12598-025-03478-6

Keywords