Skip to main content
Log in

Non-local spin entanglement in a fermionic chain

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An effective two-spin density matrix (TSDM) for a pair of spin-1/2 degree of freedom, residing at a distance of R in a spinfull Fermi sea, can be obtained from the two-electron density matrix following the framework prescribed in Oh and Kim (Phys Rev A 69:054305, 2004. https://doi.org/10.1103/PhysRevA.69.054305). We note that the single-spin density matrix (SSDM) obtained from this TSDM for generic spin-degenerate systems of free fermions is always pinned to the maximally mixed state, i.e. \((1/2) \ {\mathbb {I}}\), independent of the distance R, while the TSDM confirms to the form for the set of maximally entangled mixed state (the so-called X-state) at finite R. The X-state reduces to a pure state (a singlet) in the \(R\rightarrow 0\) limit, while it saturates to an X-state with the largest allowed value of von-Neumann entropy of \(2 \ln 2\) as \(R\rightarrow \infty \) independent of the value of chemical potential. However, once an external magnetic field is applied to lift the spin-degeneracy, we find that the von-Neumann entropy of SSDM becomes a function of the distance R between the two spins. We also show that the von-Neumann entropy of TSDM in the \(R\rightarrow \infty \) limit becomes a function of the chemical potential and it saturates to \(2 \ln 2\) only when the band in completely filled unlike the spin-degenerate case. Finally, we extend our study to include spin–orbit coupling and show that it does effect these asymptotic results. Our findings are in sharp contrast to previous works, which were based on continuum models owing to physics which stem from the lattice model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zeng, B., Chen, X., Zhou, D.L., Wen, X.G.: Quantum Information Meets Quantum Matter. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008). https://doi.org/10.1103/RevModPhys.80.517

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Shi-Jian, G., Tian, G.-S., Lin, H.-Q.: Ground-state entanglement in the x x z model. Phys. Rev. A 71, 052322 (2005). https://doi.org/10.1103/PhysRevA.71.052322

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Shi-Jian, G., Deng, S.-S., Li, Y.-Q., Lin, H.-Q.: Entanglement and quantum phase transition in the extended hubbard model. Phys. Rev. Lett. 93, 086402 (2004). https://doi.org/10.1103/PhysRevLett.93.086402

    Article  ADS  Google Scholar 

  5. Larsson, D., Johannesson, H.: Entanglement scaling in the one-dimensional hubbard model at criticality. Phys. Rev. Lett. 95, 196406 (2005). https://doi.org/10.1103/PhysRevLett.95.196406

    Article  ADS  Google Scholar 

  6. Vidal, J.: Concurrence in collective models. Phys. Rev. A 73, 062318 (2006). https://doi.org/10.1103/PhysRevA.73.062318

    Article  ADS  Google Scholar 

  7. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. O’connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2001). https://doi.org/10.1103/PhysRevA.63.052302

    Article  ADS  Google Scholar 

  9. Arnesen, M.C., Bose, S., Vedral, V.: title Natural thermal and magnetic entanglement in the 1d heisenberg model. Phys. Rev. Lett. 87, 017901 (2001). https://doi.org/10.1103/PhysRevLett.87.017901

    Article  ADS  Google Scholar 

  10. Wang, X.: Entanglement in the quantum heisenberg xy model. Phys. Rev. A 64, 012313 (2001). https://doi.org/10.1103/PhysRevA.64.012313

    Article  ADS  Google Scholar 

  11. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002). https://doi.org/10.1103/PhysRevA.66.032110

    Article  ADS  MathSciNet  Google Scholar 

  12. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002). https://doi.org/10.1038/416608a

    Article  ADS  Google Scholar 

  13. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003). https://doi.org/10.1103/PhysRevLett.90.227902

    Article  ADS  Google Scholar 

  14. Glaser, U., Büttner, H., Fehske, H.: Entanglement and correlation in anisotropic quantum spin systems. Phys. Rev. A 68, 032318 (2003). https://doi.org/10.1103/PhysRevA.68.032318

    Article  ADS  Google Scholar 

  15. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998). https://doi.org/10.1103/PhysRevLett.80.2245

    Article  ADS  MATH  Google Scholar 

  16. Vedral, V.: Mean-field approximations and multipartite thermal correlations. New J. Phys. 6, 22 (2004). https://doi.org/10.1088/1367-2630/6/1/022

    Article  ADS  Google Scholar 

  17. Gu, S.J., Sun, C.P., Lin, H.Q.: Universal role of correlation entropy in critical phenomena. J. Phys. A Math. Theor. 41, 025002 (2007). https://doi.org/10.1088/1751-8113/41/2/025002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Schliemann, J., Cirac, J.I., Kuś, M., Lewenstein, M., Loss, D.: Quantum correlations in two-fermion systems. Phys. Rev. A 64, 022303 (2001). https://doi.org/10.1103/PhysRevA.64.022303

    Article  ADS  Google Scholar 

  19. Wiseman, H.M., Vaccaro, J.A.: Entanglement of indistinguishable particles shared between two parties. Phys. Rev. Lett. 91, 097902 (2003). https://doi.org/10.1103/PhysRevLett.91.097902

    Article  ADS  Google Scholar 

  20. Ghirardi, G.C., Marinatto, L.: General criterion for the entanglement of two indistinguishable particles. Phys. Rev. A 70, 012109 (2004). https://doi.org/10.1103/PhysRevA.70.012109

    Article  ADS  Google Scholar 

  21. Zanardi, P.: Quantum entanglement in fermionic lattices. Phys. Rev. A 65, 042101 (2002). https://doi.org/10.1103/PhysRevA.65.042101

    Article  ADS  MathSciNet  Google Scholar 

  22. Shi, Yu.: Quantum entanglement of identical particles. Phys. Rev. A 67, 024301 (2003). https://doi.org/10.1103/PhysRevA.67.024301

    Article  ADS  MathSciNet  Google Scholar 

  23. Friis, N., Lee, A.R., Bruschi, D.E.: Fermionic-mode entanglement in quantum information. Phys. Rev. A 87, 022338 (2013). https://doi.org/10.1103/PhysRevA.87.022338

    Article  ADS  Google Scholar 

  24. Benatti, F., Floreanini, R., Marzolino, U.: Entanglement in fermion systems and quantum metrology. Phys. Rev. A 89, 032326 (2014). https://doi.org/10.1103/PhysRevA.89.032326

    Article  ADS  Google Scholar 

  25. Debarba, T., Vianna, R.O., Iemini, F.: Quantumness of correlations in fermionic systems. Phys. Rev. A 95, 022325 (2017). https://doi.org/10.1103/PhysRevA.95.022325

    Article  ADS  Google Scholar 

  26. Iemini, F., Debarba, T., Vianna, R.O.: Quantumness of correlations in indistinguishable particles. Phys. Rev. A 89, 032324 (2014). https://doi.org/10.1103/PhysRevA.89.032324

    Article  ADS  Google Scholar 

  27. Majtey, A.P., Bouvrie, P.A., Valdés-Hernández, A., Plastino, A.R.: Multipartite concurrence for identical-fermion systems. Phys. Rev. A 93, 032335 (2016). https://doi.org/10.1103/PhysRevA.93.032335

    Article  ADS  Google Scholar 

  28. Gigena, N., Rossignoli, R.: Bipartite entanglement in fermion systems. Phys. Rev. A 95, 062320 (2017). https://doi.org/10.1103/PhysRevA.95.062320

    Article  ADS  Google Scholar 

  29. Islam, R., Ma, R., Preiss, P.M., Eric Tai, M., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015). https://doi.org/10.1038/nature15750

    Article  ADS  Google Scholar 

  30. Yuan, H.Y., Yung, M.-H.: Thermodynamic entanglement of magnonic condensates. Phys. Rev. B 97, 060405 (2018). https://doi.org/10.1103/PhysRevB.97.060405

    Article  ADS  Google Scholar 

  31. Demokritov, S.O., Demidov, V.E., Dzyapko, O., Melkov, G.A., Serga, A.A., Hillebrands, B., Slavin, A.N.: Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006). https://doi.org/10.1038/nature05117

    Article  ADS  Google Scholar 

  32. Dirac, P.A.M.: Note on the interpretation of the density matrix in the many-electron problem. Math. Proc. Camb. Philos. Soc. 27, 240–243 (1931). https://doi.org/10.1017/S0305004100010343

    Article  ADS  MATH  Google Scholar 

  33. Löwdin, P.-O.: Quantum theory of many-particle systems. i. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474 (1955). https://doi.org/10.1103/PhysRev.97.1474

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Löwdin, P.-O.: Quantum theory of many-particle systems. ii. Study of the ordinary Hartree–Fock approximation. Phys. Rev. 97, 1490 (1955). https://doi.org/10.1103/PhysRev.97.1490

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Vedral, V.: Entanglement in the second quantization formalism. Centr. Eur. J. Phys. 1, 289–306 (2003). https://doi.org/10.2478/BF02476298

    Article  ADS  Google Scholar 

  36. Oh, S., Kim, J.: Entanglement of electron spins of noninteracting electron gases. Phys. Rev. A 69, 054305 (2004). https://doi.org/10.1103/PhysRevA.69.054305

    Article  ADS  Google Scholar 

  37. Verstraete, F., Audenaert, K., De Moor, B.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001). https://doi.org/10.1103/PhysRevA.64.012316

    Article  ADS  Google Scholar 

  38. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69, 052330 (2004). https://doi.org/10.1103/PhysRevA.69.052330

    Article  ADS  Google Scholar 

  39. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77, 060304 (2008). https://doi.org/10.1103/PhysRevA.77.060304

    Article  ADS  MathSciNet  Google Scholar 

  40. Arnaud, L., Cerf, N.J.: Exploring pure quantum states with maximally mixed reductions. Phys. Rev. A 87, 012319 (2013). https://doi.org/10.1103/PhysRevA.87.012319

    Article  ADS  Google Scholar 

  41. Sudevan, S., Das, S.: N-qubit states with maximum entanglement across all bipartitions: a graph state approach (2022). arXiv:2201.05622

  42. Alipour, S., Tuohino, S., Rezakhani, A.T., Ala-Nissila, T.: Unreliability of mutual information as a measure for variations in total correlations. Phys. Rev. A 101, 042311 (2020). https://doi.org/10.1103/PhysRevA.101.042311

    Article  ADS  MathSciNet  Google Scholar 

  43. Zhang, S., Cole, W.S., Paramekanti, A., Trivedi, N.: Spin–orbit coupling in optical lattices. In: Annual Review of Cold Atoms and Molecules, pp. 135–179 (2015). https://doi.org/10.1142/9789814667746_0003

  44. Cornfeld, E., Sela, E., Goldstein, M.: Measuring fermionic entanglement: entropy, negativity, and spin structure. Phys. Rev. A 99, 062309 (2019). https://doi.org/10.1103/PhysRevA.99.062309

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.V.V. acknowledges the Council of Scientific and Industrial Research (CSIR), Govt. of India, for financial support. S.D. would like to acknowledge the MATRICS grant (Grant No. MTR/ 2019/001 043) from the Science and Engineering Research Board (SERB) for funding.

Author information

Authors and Affiliations

Authors

Contributions

The first two authors, S.J. and A.V.V., have contributed equally to this work.

Corresponding author

Correspondence to Sayan Jana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, S., Varma, A.V., Saha, A. et al. Non-local spin entanglement in a fermionic chain. Quantum Inf Process 21, 374 (2022). https://doi.org/10.1007/s11128-022-03718-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11128-022-03718-z

Keywords