Skip to main content
Cornell University

In just 5 minutes help us improve arXiv:

Annual Global Survey
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:1506.06981

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computer Vision and Pattern Recognition

arXiv:1506.06981 (cs)
[Submitted on 23 Jun 2015]

Title:R-CNN minus R

Authors:Karel Lenc, Andrea Vedaldi
View a PDF of the paper titled R-CNN minus R, by Karel Lenc and Andrea Vedaldi
View PDF
Abstract:Deep convolutional neural networks (CNNs) have had a major impact in most areas of image understanding, including object category detection. In object detection, methods such as R-CNN have obtained excellent results by integrating CNNs with region proposal generation algorithms such as selective search. In this paper, we investigate the role of proposal generation in CNN-based detectors in order to determine whether it is a necessary modelling component, carrying essential geometric information not contained in the CNN, or whether it is merely a way of accelerating detection. We do so by designing and evaluating a detector that uses a trivial region generation scheme, constant for each image. Combined with SPP, this results in an excellent and fast detector that does not require to process an image with algorithms other than the CNN itself. We also streamline and simplify the training of CNN-based detectors by integrating several learning steps in a single algorithm, as well as by proposing a number of improvements that accelerate detection.
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:1506.06981 [cs.CV]
  (or arXiv:1506.06981v1 [cs.CV] for this version)
  https://doi.org/10.48550/arXiv.1506.06981
arXiv-issued DOI via DataCite

Submission history

From: Karel Lenc [view email]
[v1] Tue, 23 Jun 2015 13:26:36 UTC (2,108 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled R-CNN minus R, by Karel Lenc and Andrea Vedaldi
  • View PDF
  • TeX Source
view license
Current browse context:
cs.CV
< prev   |   next >
new | recent | 2015-06
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar

DBLP - CS Bibliography

listing | bibtex
Karel Lenc
Andrea Vedaldi
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • Click here to contact arXiv Contact
  • Click here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status